

MANUALE SISTEMI DI INSTALLAZIONE MEDIO-LEGGERE.

Dati tecnici sistema MQ ver. 01/2017



# Terms of common cooperation / Legal disclaimer

The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User's specific jurisdiction and project requirements.



# **Content and overview of this manual**

| Product                                     | Designation                            | Item number                   | Page          |  |  |  |
|---------------------------------------------|----------------------------------------|-------------------------------|---------------|--|--|--|
| MQ System L&P channels - section properties |                                        |                               |               |  |  |  |
| A CO. CO.                                   | MQ-21 2m<br>MQ-21 3m<br>MQ-21 6m       | 2148545<br>2148544<br>2148543 | 5             |  |  |  |
|                                             | MQ-41-L 2m<br>MQ-41-L 3m<br>MQ-41-L 6m | 2141966<br>2141965<br>2141964 | 5             |  |  |  |
| MQ System L&                                | P parts and connect                    | tors - loading ca             | pacity limits |  |  |  |
|                                             | MQA-S M8<br>MQA-S M10                  | 2141906<br>2141907            | 7             |  |  |  |
|                                             | MQZ-P9<br>MQZ-P11                      | 2141908<br>2141909            | 11            |  |  |  |
| 3                                           | MQZ-TW-M8<br>MQZ-TW-M10                | 2142030<br>2142031            | 15            |  |  |  |
|                                             | MQW-L-1/1                              | 2142020                       | 21            |  |  |  |
| 0 0                                         | MQW-L-2/1                              | 2142021                       | 25            |  |  |  |
|                                             | MQW-H2                                 | 2141929                       | 29            |  |  |  |
|                                             | MQP-L-6/2                              | 2141928                       | 33            |  |  |  |
|                                             | MQP-41                                 | 2141927                       | 39            |  |  |  |
|                                             | Through bolt M8                        | Various<br>see BOM            | 47            |  |  |  |
|                                             | Through bolt M10                       | Various<br>see BOM            | 51            |  |  |  |



# **Content and overview of this manual**

| Product                                                      | Designation                                                                                                     | Item number                                                                  | Page |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------|--|--|--|
| MQ System L&P parts and connectors - loading capacity limits |                                                                                                                 |                                                                              |      |  |  |  |
|                                                              | HHK 41 M8X40<br>HHK 41 M8X50<br>HHK 41 M8X60<br>HHK 41 M8X80<br>HHK 41 M8X100<br>HHK 41 M8X120<br>HHK 41 M8X150 | 312361<br>312362<br>312363<br>312365<br>312365<br>312367<br>312368<br>312369 | 55   |  |  |  |
| J                                                            | HHK 41 M10X40<br>HHK 41 M10X60<br>HHK 41 M10X80<br>HHK 41 M10X100<br>HHK 41 M10X150                             | 312371<br>312373<br>312374<br>312375<br>312375<br>312377                     | 59   |  |  |  |
|                                                              | MQK-L-21/200<br>MQK-L-21/300<br>MQK-L-21/450                                                                    | 2141924<br>2141925<br>2141926                                                | 63   |  |  |  |
|                                                              | HUS3-H8 Direct fixation to concrete                                                                             | Various                                                                      | 77   |  |  |  |
|                                                              | HST3-M10<br>Direct fixation<br>to concrete                                                                      | Various                                                                      | 83   |  |  |  |



| MQ System L&P - Ch                              | annels                               | 3                    |            |                                               |
|-------------------------------------------------|--------------------------------------|----------------------|------------|-----------------------------------------------|
| Designation                                     |                                      | Item number          |            | Yield strength 1.1 Material safety factor     |
| MQ-21 2m                                        |                                      | 2148545              |            | 1.4                                           |
| MQ-21 3m<br>MQ-21 6m                            |                                      | 2148544              | Charact    | Permissible stress Recommended capacity limit |
| MQ-41-L 2m                                      |                                      | 2141966              |            | Self weight                                   |
| MQ-41-L 3m                                      |                                      | 2141965              |            | Live loads                                    |
| MQ-41-L 6m                                      |                                      | 2141964              |            | Action Resistance                             |
| Technical data                                  |                                      |                      | MQ-21      | MQ-41-L                                       |
| For girder MI / cross section including torsion |                                      |                      |            |                                               |
| Cross-sectional area                            | А                                    | [mm <sup>2</sup> ]   | 182.12     | 199.57                                        |
| Channel weight                                  |                                      | [kg/m]               | 1.43       | 1.6                                           |
| Wall thickness                                  |                                      | [mm]                 | 2.0        | 1.5                                           |
| Material                                        |                                      |                      |            |                                               |
| yield strength                                  | $\mathbf{f}_{\mathbf{y},\mathbf{k}}$ | [N/mm <sup>2</sup> ] | 290        | 290                                           |
| permissible stress*                             | $\sigma_{\text{rec}}$                | [N/mm <sup>2</sup> ] | 188.3      | 188.3                                         |
| E-module                                        |                                      | [N/mm <sup>2</sup> ] | 210000     | 210000                                        |
| Surface                                         |                                      |                      |            |                                               |
| hot dip galvanized                              |                                      | [µm]                 | approx. 20 | approx. 10                                    |
| Cross-section values Y-axis                     |                                      |                      |            |                                               |
| Axis of gravity A                               | e <sub>1</sub>                       | [mm]                 | 11.13      | 21.44                                         |
| Axis of gravity B                               | e <sub>2</sub>                       | [mm]                 | 9.47       | 19.86                                         |
| moment of inertia                               | l <sub>y</sub>                       | [cm <sup>4</sup> ]   | 0.99       | 4.48                                          |
| Section modulus A                               | $W_{y1}$                             | [cm <sup>3</sup> ]   | 0.89       | 2.09                                          |
| Section modulus B                               | $W_{y2}$                             | [cm <sup>3</sup> ]   | 1.05       | 2.25                                          |
| Radius of gyration                              | i <sub>y</sub>                       | [cm]                 | 0.74       | 1.50                                          |
| Permissible moment                              | My                                   | [Nm]                 | 168        | 394                                           |
| Cross-section values Z-axis                     |                                      |                      |            |                                               |
| moment of inertia                               | ا <sub>z</sub>                       | [cm <sup>4</sup> ]   | 4.63       | 5.90                                          |
| Section modulus                                 | Wz                                   | [cm <sup>3</sup> ]   | 2.24       | 2.86                                          |
| Radius of gyration                              | i <sub>z</sub>                       | [cm]                 | 1.59       | 1.72                                          |
| Data to the torsion                             |                                      |                      |            |                                               |
| torsional moment of inertia                     | lt                                   | [mm <sup>4</sup> ]   | 151.17     | 112.13                                        |
| torsional section modulus                       | W <sub>t</sub>                       | [mm <sup>3</sup> ]   | 75.59      | 75.76                                         |



Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 6



| Item number |
|-------------|
| 2141906     |
| 2141907     |
|             |

### Corrosion protection:

Electro galvanized

### Weight:

M 8 - 53g M10 - 53g

### Submittal text:

Part, combining channel nut with metric internal thread M8 or M10 and channel plate. Installation by mounting to open side of channel and rotation to 45°. Fixation by screwing in threaded rod ant tightening a counter nut to pre-defined installation torque. Typically used for fixing pipe-rings and other threaded rod connections to installation channel. Can transfer tension, compression and shear loads.

### Material properties:

| · · ·        |                    |                   |              |                            |
|--------------|--------------------|-------------------|--------------|----------------------------|
| Material     | Yield strength     | Ultimate strength | E-modulus    | Shear modulus              |
| S235JR -     | f = 235 N          | f = 360 N         | E = 210000 N | G = 80769 N                |
| DIN EN 10025 | $m_y = 233$ $mm^2$ | $mm^2$            | $mm^2$       | $d = 80709 \frac{1}{mm^2}$ |

### **Instruction For Use:**







| Possible loading cases |  |  |  |
|------------------------|--|--|--|
| Standard               |  |  |  |
|                        |  |  |  |

### Design criteria used for loading capacity

### Methodology:

Finite element analysis

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
|   | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:







| Loading case: Standard                                                                                                                                             |                                                                                                          | Combinations covered by loading case                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|
| BOM:<br>For fixation on M8 threa<br>1x MQA-S M8<br>1x M8 nut<br>1x AM8x1000 t-rod<br>For fixation on M10 threa<br>1x MQA-S M10<br>1x M10 nut<br>1x AM10x1000 t-rod | ided rod<br>2141906<br>216465<br>339793 or various<br>aded rod<br>2141907<br>216466<br>339795 or various | Saddle nut installed in all sizes of MQ channel opened up or down |  |

# Recommended loading capacity - simplified for most common applications







#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$  C), no high (> +100 $^{\circ}\,$  C) temperatures



### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

#### 1. MQA-S-M8



| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 2.10   | 2.10   |        |        | 4.2    |        |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
|        |        |        |        |        |        |

valid for edge distance ≥ 100mm

2. MQA-S-M10



| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 3.00   | 3.00   |        |        | 4.2    |        |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
|        |        |        |        |        |        |

valid for edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

2/2

# **MQZ-P Bored plate**

| Designation | Item number |
|-------------|-------------|
| MQZ-P9      | 2141908     |
| MQZ-P11     | 2141909     |

### Corrosion protection:

Electro galvanized

# Weight:

MQZ-P9 - 35g MQZ-P11 - 35g

### Submittal text:

Installation channel plate for fixation channels to threaded rods. Typically used in pairs to open side and back of channels in combination with counter nuts. Single piece usage for anchor fixation through the channel directly to base material. Geometry allows clamping of channel walls and high load transfer.

### Material properties:

| material properties. |                        |                         |                     |                         |
|----------------------|------------------------|-------------------------|---------------------|-------------------------|
| Material             | Yield strength         | Ultimate strength       | E-modulus           | Shear modulus           |
| S235JR -             | f = 235 N              | $f = 360 - \frac{N}{N}$ | E = 210000 <u>N</u> | $G = 80769 \frac{N}{N}$ |
| DIN EN 10025         | $mm^2$ mm <sup>2</sup> | $mm^2$                  | $mm^2$              | $mm^2$                  |

### Instruction For Use:

Simplified, not attached to the packaging Loading case "Both sides,,







# **MQZ-P Bored plate**

| Possible loadi | ng cases |  |
|----------------|----------|--|
| Both sides     |          |  |
|                |          |  |

### Design criteria used for loading capacity

### Methodology:

Finite element analysis

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
|   | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





# **MQZ-P Bored plate**

| Possible load | ing cases |
|---------------|-----------|
| Both sides    |           |
|               |           |

| Loading case: Both sides                                                                                                                                                                      | Combinations covered by loading case |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| BOM:For fixation on M8 threaded rod2x MQZ-P9 bored plate214192x M8 nut216461x AM8x1000 t-rod33979For fixation on M10 threaded rod2x MQZ-P11 bored plate2x M10 nut216441x AM10x1000 t-rod33979 | r various r various                  |



| Design loading capacity - 3D                                                                                                                  | 1/2                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                                        |                      |
| Veld sherogin         Design load           Design load         5.55           Soft weight         1.5           Live load         Resistance |                      |
| Limiting components of capacity evaluated                                                                                                     | in following tables: |
| 1. Bored plate                                                                                                                                |                      |



2/2

# **MQZ-P Bored plate**

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures Г

| Possible  | loadii                                       | ng cases |  |
|-----------|----------------------------------------------|----------|--|
| Both side | s                                            |          |  |
|           | <b>●                                    </b> |          |  |

# **Design loading capacity - 3D**

### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.





| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
|        |        |        |        | 5.00   | 5.00   |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
|        |        |        |        |        |        |

for MQ-41-L and MQ-41 channel

2. MQZ-P11



| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 5.00             | 5.00             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

for MQ-41-L and MQ-41 channel

| Designation | Item number |
|-------------|-------------|
| MQZ-TW-M8   | 2142030     |
| MQZ-TW-M10  | 2142031     |
|             |             |

# Corrosion protection:

Electro galvanized

## Weight:

MQZ-TW-M8 - 37g MQZ-TW-M10 - 37g

### Submittal text:

Part, combining 45x3 mm washer and a metric nut M8 or M10 in one element. Typically used for fixation of channels to threaded rods. Can be used in pairs to open and back side of channel. Version M10 can be used as single piece to back of the channel with nut fitting to channel long holes and securing untightening.

### Material properties:

| material properties. |                             |                         |                 |                         |
|----------------------|-----------------------------|-------------------------|-----------------|-------------------------|
| Material             | Yield strength              | Ultimate strength       | E-modulus       | Shear modulus           |
| S235JR -             | f = 235 <u>N</u>            | $f = 360 - \frac{N}{N}$ | E = 210000 N    | $G = 80769 \frac{N}{N}$ |
| DIN EN 10025         | $m_y = 200$ mm <sup>2</sup> | $mm^2$                  | mm <sup>2</sup> | mm <sup>2</sup>         |

# Instruction For Use:



# Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 15







### Design criteria used for loading capacity

### Methodology:

Finite element analysis

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
|   | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





| Possible loading cases |  |  |  |  |
|------------------------|--|--|--|--|
| Bottom side Both sides |  |  |  |  |
|                        |  |  |  |  |

| BOM: hex-head of the TW locked in the slot of the channel       Integrated hexagon head of the TW locked in of the channel         For fixation on M10 threaded rod       1x MQZ-TW-M10       2142031         1x AM10x1000 t-rod       339795 or various         M10 nut securing either TW or the anchor       216466 | n the slot<br>TW or |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|

| Recommended loading capacity - simplified for most common applications |    |                                                                                                                                                                                                               |  |
|------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method                                                                 | Z  | ±Fx,rec. ±Fy,rec. ±Fz,rec.                                                                                                                                                                                    |  |
| Characteristic load Serf weight Live loads                             | ×y | [kN]     [kN]       -3.00   These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas. |  |
| Action Resistance                                                      | •  |                                                                                                                                                                                                               |  |

| Design loading capacity - 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| Vest strength Copies had Copies by line Copies by l |                      |
| Limiting components of capacity evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in following tables: |
| 1. Trapeze wheel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |



2/2

# **MQZ-TW Trapeze Wheel**

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures



### **Design loading capacity - 3D**

#### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.





| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 0.0              | 4.20             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

for MQ-41-L and MQ-41 channel

Condition:

hex-head of the TW locked in the slot of the channel - nut used for securing either TW or anchor and hex nut used for securing either the TW or anchor



| Possible loading cases |      |          |                           |  |
|------------------------|------|----------|---------------------------|--|
| Bottom s               | side | Both sid | es                        |  |
|                        |      |          | <i>₩</i> • <i>Ш</i> • − − |  |

| Loading case: Both sides                                                                                                                                              |                                                              | Combinations covered by loading case                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BOM:<br>For fixation on M8 threaded rod<br>2x MQZ-TW-M8 trapeze wheel<br>1x AM8x1000 t-rod<br>For fixation on M10 threaded rod<br>1x MQZ-TW-M10<br>1x AM10x1000 t-rod | 2142030<br>339793 or various<br>2142031<br>339795 or various | Integrated hexagon head should be heading out of the channels - for all sizes of the MQ system channels. For both orientations of the channel - open down or open up |

| Recommended loading capacity - simplified for most common applications |     |                                                           |                                    |                                                   |                                         |
|------------------------------------------------------------------------|-----|-----------------------------------------------------------|------------------------------------|---------------------------------------------------|-----------------------------------------|
| Method                                                                 | z   |                                                           | ±Fx,r<br>ec.                       | ±Fy,r<br>ec.                                      | ±Fz,r<br>ec.                            |
| Vield strength                                                         | × y | M8                                                        | [kN]                               | [kN]                                              | [kN]<br>2.50                            |
| Characteristic load SetTweight<br>Live loads                           |     | M10<br>These values<br>capacity limits<br>directions, use | are individual or<br>For any combi | ne directional<br>nations of mu<br>and their corr | 3.00<br>maximal<br>ultiple<br>esponding |
| Action Resistance                                                      |     | interaction for                                           | mulas.                             |                                                   |                                         |

| Design loading capacity - 3D              | 1/2                  |
|-------------------------------------------|----------------------|
| Method                                    |                      |
| Ved strength and<br>Design hed            |                      |
| Limiting components of capacity evaluated | in following tables: |
| 1. Trapeze wheel                          |                      |



#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$  C), no high (> +100 $^{\circ}\,$  C) temperatures



# **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

### 1. MQZ-TW-M8



| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 3.5              | 3.5              |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

for MQ-41-L and MQ-41 channel

2. MQZ-TW-M10

| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 4.2              | 4.2              |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

for MQ-41-L and MQ-41 channel

### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 20

2/2

| Designation | Item number |          |
|-------------|-------------|----------|
| MQW-L-1/1   | 2142020     |          |
|             |             | Ø12.5 21 |

### Corrosion protection:

Electro galvanized

## Weight:

159g

### Submittal text:

Basic angle for connecting installation channels at 90°. Usage with MQM-M10 channel wing nuts and screws M10x20 – one at each side. Material thickness of 6mm and asymmetrical length of the sides. Can be used also for fixation of threaded rods and anchors M10 and M12.

| Material | properties: |
|----------|-------------|
|          |             |

| Material                   | Yield strength             | Ultimate strength              | E-modulus                   | Shear modulus              |
|----------------------------|----------------------------|--------------------------------|-----------------------------|----------------------------|
| S235JR - DIN EN 10025      | $F_y = 235 \frac{N}{mm^2}$ | $F_{u} = 360 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| DD11 MOD - HN 555-1 2012.3 |                            |                                |                             |                            |

### Instruction For Use:

Simplified, not attached to the packaging







| Possible loadi | ng cases |  |
|----------------|----------|--|
| Standard       |          |  |
|                |          |  |

### Design criteria used for loading capacity

### Methodology:

Analytic calculation Hardware tests

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures –Part 1-1: General          |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 03.2012 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures –Part 1-1: General     |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures –Part 1-3: General     |         |
|   |             | rules-Supplementary rules for cold-formed members and         |         |
|   |             | sheeting                                                      | 09.2010 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures –Part 1-5:Plated       |         |
|   |             | structural elements                                           | 06.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures –Part 1-8: Design      |         |
|   |             | of joints                                                     | 03.2012 |
| • | RAL-GZ 655  | Pipe Support                                                  | 04.2008 |

#### Software:

- Mathcad 15.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





| Possible loading cases |  |  |  |  |
|------------------------|--|--|--|--|
| Standard               |  |  |  |  |
|                        |  |  |  |  |

| Loading case: Standard                              |                  | Combinations covered by loading case                  |  |
|-----------------------------------------------------|------------------|-------------------------------------------------------|--|
| BOM:                                                |                  | Angle perpendicularly connecting two open sections of |  |
| 1x MQW-L-1/1                                        | 2142020          | channels                                              |  |
| 2x MQM-M10 wing nut<br>2x M10x20 hexagon head screw | 369626<br>216453 |                                                       |  |

| Recommended loading capacity - simplified for most common applications |     |                                                                                             |                                                                       |                                                  |  |  |
|------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|--|--|
| Method                                                                 | Z   | ±Fx,rec.                                                                                    | ±Fy,rec.                                                              | ±Fz,rec.                                         |  |  |
| Treid strength                                                         | x x | [кіл]<br>1.27                                                                               | [KN]<br>0.00                                                          | 2.50                                             |  |  |
| Characteristic load Saft weight Live loads Action Resistance           |     | These values are in<br>capacity limits. For<br>directions, use desi<br>interaction formulas | ndividual one direct<br>any combinations<br>ign values and thei<br>s. | tional maximal<br>of multiple<br>r corresponding |  |  |

| Design loading capacity - 3D                                                                          | 1/2                  |
|-------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                |                      |
| Ved sterryth Capacity ind<br>Design load<br>23<br>Cell Annold<br>1.5<br>Live load<br>Action Pressions |                      |
| Limiting components of capacity evaluated                                                             | in following tables: |
| 1. Steel connector                                                                                    | 2. Wing nut          |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loading cases |  |  |  |  |
|------------------------|--|--|--|--|
| Standard               |  |  |  |  |
|                        |  |  |  |  |

# Design loading capacity - 3D

### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 3.15   | 5.84   | 0.00   | 0.00   | 4.85   | 4.45   |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
| 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |

### Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

2. Wing nut



| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 3.55   | 4.88   | 0.00   | 0.00   | 7.00   | 7.00   |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
| 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le$$

### Installation Technical Manual - Technical Data - MQ system light & project

1

2/2

| Designation | Item number |   |
|-------------|-------------|---|
| MQW-L-2/1   | 2142021     | 1 |
|             |             |   |

## Corrosion protection:

Electro galvanized

# Weight:

241g

# Submittal text:

Basic angle for connecting installation channels at 90°. Usage with MQM-M10 channel wing nuts and screws M10x20 – two on the long side and one on the short side. Material thickness of 6mm. Can be used also for fixation of threaded rods and anchors M10 and M12.

# Material properties:

| Material     | Yield strength     | Ultimate strength | E-modulus                 | Shear modulus              |
|--------------|--------------------|-------------------|---------------------------|----------------------------|
| S235JR -     | f - 225 N          | f - 360 N         | E = 210000 N              | C = 80760 N                |
| DIN EN 10025 | $m_y = 235$ $mm^2$ | $mm^2$            | $L = 210000 \text{ mm}^2$ | $G = 80709 \frac{1}{mm^2}$ |

# Instruction For Use:

Simplified, not attached to the packaging







| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

### Design criteria used for loading capacity

### Methodology:

- Analytic calculation
- Hardware tests

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures –Part 1-1: General          |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 03.2012 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures –Part 1-1: General     |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures –Part 1-3: General     |         |
|   |             | rules-Supplementary rules for cold-formed members and         |         |
|   |             | sheeting                                                      | 09.2010 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures –Part 1-5:Plated       |         |
|   |             | structural elements                                           | 06.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures –Part 1-8: Design      |         |
|   |             | of joints                                                     | 03.2012 |
| • | RAL-GZ 655  | Pipe Support                                                  | 04.2008 |
|   |             |                                                               |         |

#### Software:

- Mathcad 15.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





| Possible loadi | ng cases |  |
|----------------|----------|--|
| Standard       |          |  |
|                |          |  |

| Loading case: Standard                                                      |                             | Combinations covered by loading case                           |
|-----------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|
| BOM:<br>1x MQW-L-2/1<br>3x MQM-M10 wing nut<br>3x M10x20 hexagon head screw | 2142021<br>369626<br>216453 | Angle perpendicularly connecting two open sections of channels |



| Design loading capacity - 3D                                                                              | 1/2                  |
|-----------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                    |                      |
| Veld storyth Capacity Init<br>Design load<br>Capacity Init<br>Lise load<br>Lise load<br>Action Resistance |                      |
| Limiting components of capacity evaluated                                                                 | in following tables: |
| 1. Steel connector                                                                                        | 2. Wing nut          |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$  C), no high (> +100 $^{\circ}$  C) temperatures

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

# Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

### 1. Steel connector



| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 3.75   | 5.84   | 1.55   | 1.55   | 4.85   | 4.45   |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
| 5.84   | 5.84   | 0.00   | 0.00   | 0.00   | 0.00   |

#### Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

2. Wing nut



| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 3.60             | 4.88             | 0.75             | 0.75             | 12.60            | 7.00             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 6.25             | 6.25             | 0.00             | 0.00             | 0.00             | 0.00             |

Interaction:

Tension and shear parallel to channel

$$\frac{x.Ed}{x} + \frac{F_{z.Ed}}{z} \le 1$$

Shear transverse to channel

$$\frac{F_{y,Ed}}{F_{y,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \le 1$$

# Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 28

2/2

Package content

# **MQW-H2 Angle**

| Designation<br>MQW-H2                              | Item number<br>2141929 | 75 |
|----------------------------------------------------|------------------------|----|
| <b>Corrosion protection:</b><br>Electro galvanized |                        | 4  |
| Weight:<br>211g                                    |                        | 8  |

### Submittal text:

Angle for connecting two channels at 90° in combination with two channel connectors MQN. Angle geometry and integrated bends allows high stiffness and direct load transfer to the installation channel.

| Material properties:    |                            |                               |                             |                            |
|-------------------------|----------------------------|-------------------------------|-----------------------------|----------------------------|
| Material                | Yield strength             | Ultimate strength             | E-modulus                   | Shear modulus              |
| S275JR - DIN EN 10025-2 | $F_y = 275 \frac{N}{mm^2}$ | $F_{u} = 430  \frac{N}{mm^2}$ | E = 210000 $\frac{N}{mm^2}$ | $G = 80769 \frac{N}{mm^2}$ |

### Instruction For Use:



Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 29



# **MQW-H2 Angle**

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

### Design criteria used for loading capacity

### Methodology:

- Finite element analysis
- · Hardware tests

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
|   | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |
|   |             |                                                               |         |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

static loads

### no fatigue loads

### Simplified drawing:





# **MQW-H2 Angle**

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

| Loading case: Standard                                 | Combinations covered by loading case                           |
|--------------------------------------------------------|----------------------------------------------------------------|
| BOM:<br>1x MQW-H2 2141929<br>2x MQN push button 369623 | Angle perpendicularly connecting two open sections of channels |

| Recommended loading capacity - simplified                                                                            | l for most common a | applicat                                                                                                              | ions                                                                                                |                                                                              |   |
|----------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|
| Method Vield strength I.4 Permissible stress Characteristic load Sett weight Live loads Action Resistance Resistance | y x                 | ±Fx,rec.<br>[kN]<br>2.50<br>These values are in<br>capacity limits. For<br>directions, use des<br>interaction formula | ±Fy,rec.<br>[kN]<br>1.86<br>ndividual one direct<br>any combinations s<br>ign values and thei<br>s. | + Fz,rec.<br>[kN]<br>2.50<br>ional maximal<br>of multiple<br>r corresponding |   |
|                                                                                                                      |                     |                                                                                                                       |                                                                                                     |                                                                              | - |

| Design loading capacity - 3D                                             |                                           |                 |                                      | 1/2 |
|--------------------------------------------------------------------------|-------------------------------------------|-----------------|--------------------------------------|-----|
| Method                                                                   |                                           |                 |                                      |     |
| Veld strength and<br>expanding inst<br>Design label<br>Sector Presidence |                                           | in following to | bloot                                |     |
| 1. Steel connector                                                       | 2. MQN on horizontal<br>channel (MQ-41-L) |                 | 3. MQN on vertical channel (MQ-41-L) |     |



# **MQW-H2 Angle**

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}\,$  C), no high (> +100 $^{\circ}\,$  C) temperatures

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

# Design loading capacity - 3D

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

| 1. Steel connector                     | +Fx,Rd                                                                            | -Fx,Rd                                                                                | +Fy,Rd                          | -Fy,Rd                                                  | +Fz,Rd                            | -Fz,Rd   |
|----------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------|-----------------------------------|----------|
|                                        | [kN]                                                                              | [kN]                                                                                  | [kN]                            | [kN]                                                    | [kN]                              | [kN]     |
|                                        | 5.48                                                                              | 8.40                                                                                  | 2.60                            | 2.60                                                    | 8.40                              | 5.48     |
| ↓ z                                    | +Mx,Rd                                                                            | -Mx,Rd                                                                                | +My,Rd                          | -My,Rd                                                  | +Mz,Rd                            | -Mz,Rd   |
|                                        | [kNcm]                                                                            | [kNcm]                                                                                | [kNcm]                          | [kNcm]                                                  | [kNcm]                            | [kNcm]   |
| y x                                    | 11.20                                                                             | 11.20                                                                                 | 0.00                            | 0.00                                                    | 0.00                              | 0.00     |
|                                        | $\frac{\text{Interaction:}}{\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.T}}{F_{y.T}}}$ | $\frac{\text{Ed}}{\text{Rd}} + \frac{\text{F}_{\text{z.Ed}}}{\text{F}_{\text{z.Rd}}}$ | $+ \frac{M_{x.Ed}}{M_{x.Rd}} +$ | $\frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$ | $\frac{M_{z.Ed}}{M_{z.Rd}} \le 1$ |          |
| 2. MQN on horizontal channel (MQ-41-L) | +Fx,Rd                                                                            | -Fx,Rd                                                                                | +Fy,Rd                          | -Fy,Rd                                                  | +Fz,Rd                            | -Fz,Rd   |
|                                        | [kN]                                                                              | [kN]                                                                                  | [kN]                            | [kN]                                                    | [kN]                              | [kN]     |
| ↓ Z                                    | 6.72                                                                              | 6.72                                                                                  | Not<br>decisive                 | Not<br>decisive                                         | Not<br>decisive                   | 3.50     |
|                                        | +Mx,Rd                                                                            | -Mx,Rd                                                                                | +My,Rd                          | -My,Rd                                                  | +Mz,Rd                            | -Mz,Rd   |
|                                        | [kNcm]                                                                            | [kNcm]                                                                                | [kNcm]                          | [kNcm]                                                  | [kNcm]                            | [kNcm]   |
|                                        | Not                                                                               | Not                                                                                   | Not                             | Not                                                     | Not                               | Not      |
|                                        | decisive                                                                          | decisive                                                                              | decisive                        | decisive                                                | decisive                          | decisive |
|                                        | Interaction:<br>Interaction i                                                     | s not neces                                                                           | sary                            |                                                         |                                   |          |
| 3. MQN on vertical channel (MQ-41-L)   | +Fx,Rd                                                                            | -Fx,Rd                                                                                | +Fy,Rd                          | -Fy,Rd                                                  | +Fz,Rd                            | -Fz,Rd   |
|                                        | [kN]                                                                              | [kN]                                                                                  | [kN]                            | [kN]                                                    | [kN]                              | [kN]     |
| ↓ z                                    | 3.50                                                                              | Not<br>decisive                                                                       | Not<br>decisive                 | Not<br>decisive                                         | 6.72                              | 6.72     |
|                                        | +Mx,Rd                                                                            | -Mx,Rd                                                                                | +My,Rd                          | -My,Rd                                                  | +Mz,Rd                            | -Mz,Rd   |
|                                        | [kNcm]                                                                            | [kNcm]                                                                                | [kNcm]                          | [kNcm]                                                  | [kNcm]                            | [kNcm]   |
|                                        | Not                                                                               | Not                                                                                   | Not                             | Not                                                     | Not                               | Not      |
|                                        | decisive                                                                          | decisive                                                                              | decisive                        | decisive                                                | decisive                          | decisive |
|                                        | Interaction:<br>Interaction i                                                     | s not neces                                                                           | sary                            |                                                         |                                   |          |

### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 32

2/2

| Designation | Item number |
|-------------|-------------|
| MQW-L-6/2   | 2141928     |
|             |             |

## Corrosion protection:

Electro galvanized

# Weight:

555g

### Submittal text:

Base connector for installation channels at 90°. Usage with two MQM-M10 channel wing nuts and screws M10x20. Fixation holes at the three sides of the connector allowing rotation of channel open side - when used with 41x41 or 41x21D channels. Two anchor holes with dimensions 18x11mm.

### Material properties:

| Material                 | Yield strength             | Ultimate strength          | E-modulus                   | Shear modulus              |
|--------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|
| S235JR -<br>DIN EN 10025 | $f_y = 235 \frac{N}{mm^2}$ | $f_u = 360 \frac{N}{mm^2}$ | E = 210000 $\frac{N}{mm^2}$ | $G = 80769 \frac{N}{mm^2}$ |

### Instruction For Use:

Simplified, not attached to the packaging

# Loading case "Centric,,

Loading case "Eccentric,,







| Possible loading cases |                 |  |
|------------------------|-----------------|--|
| Centric                | ntric Eccentric |  |
|                        |                 |  |

### Design criteria used for loading capacity

### Methodology:

- Analytic calculation
- · Hardware tests

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 03.2012 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 09.2010 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 06.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

### Software:

- Mathcad 15.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:







| Loading case: Centric                                                       |                             | Combinations covered by loading case                             |
|-----------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| BOM:<br>1x MQW-L-6/2<br>2x MQM-M10 wing nut<br>2x M10x20 hexagon head screw | 2141928<br>369626<br>216453 | Rail support connecting perpendicularly channel to base material |



| Design loading capacity - 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |
| Ved strongth Capacity limit<br>Design load<br>Capacity limit<br>Capacity limit<br>Capa |                      |
| Limiting components of capacity evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in following tables: |
| 1. Steel connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2. Wing nuts         |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loadi | ng cases  |  |
|----------------|-----------|--|
| Centric        | Eccentric |  |
|                |           |  |

# Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| +Fx,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 4.09             | 4.09             | 1.25             | 1.25             | 12.99            | 7.00             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 5.13             | 5.13             | 8.47             | 8.47             | 3.34             | 3.34             |
| Interaction:     |                  |                  |                  |                  |                  |

 $\frac{\mathsf{F}_{x.\mathsf{Ed}}}{\mathsf{F}_{x.\mathsf{Rd}}} + \frac{\mathsf{F}_{y.\mathsf{Ed}}}{\mathsf{F}_{y.\mathsf{Rd}}} + \frac{\mathsf{F}_{z.\mathsf{Ed}}}{\mathsf{F}_{z.\mathsf{Rd}}} + \frac{\mathsf{M}_{x.\mathsf{Ed}}}{\mathsf{M}_{x.\mathsf{Rd}}} + \frac{\mathsf{M}_{y.\mathsf{Ed}}}{\mathsf{M}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{z.\mathsf{Ed}}}{\mathsf{M}_{z.\mathsf{Rd}}} \leq 1$ 

2. Wing nuts



| n MQ-41 -2mm thick channel profile                                                                                                                                                                                |                  |                                    |                  |                                                         |                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|------------------|---------------------------------------------------------|-------------------------------------|--|--|--|
| +Fx,Rd<br>[kN]                                                                                                                                                                                                    | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]                     | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]                                          | -Fz,Rd<br>[kN]                      |  |  |  |
| 0.88                                                                                                                                                                                                              | 0.88             | 4.91                               | 5.91             | 12.60                                                   | 12.60                               |  |  |  |
| +Mx,Rd<br>[kNcm]                                                                                                                                                                                                  | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm]                   | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm]                                        | -Mz,Rd<br>[kNcm]                    |  |  |  |
| 35.00                                                                                                                                                                                                             | 35.00            | 9.38                               | 9.38             | 22.40                                                   | 22.40                               |  |  |  |
| nteraction:<br>Shear transverse to channel: Shear parallel to channel: Pull-out:                                                                                                                                  |                  |                                    |                  |                                                         |                                     |  |  |  |
| $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} \le 1 \qquad \qquad \frac{F_{z,Ed}}{F_{z,Rd}} \le 1 \qquad \qquad \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$ |                  |                                    |                  |                                                         |                                     |  |  |  |
| In MQ-41 - 1.5mm thick channel profile                                                                                                                                                                            |                  |                                    |                  |                                                         |                                     |  |  |  |
| +Fx,Rd<br>[kN]                                                                                                                                                                                                    | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]                     | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]                                          | -Fz,Rd<br>[kN]                      |  |  |  |
| 0.60                                                                                                                                                                                                              | 0.60             | 2.45                               | 2.95             | 11.86                                                   | 11.86                               |  |  |  |
| +Mx,Rd<br>[kNcm]                                                                                                                                                                                                  | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm]                   | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm]                                        | -Mz,Rd<br>[kNcm]                    |  |  |  |
| 17.50                                                                                                                                                                                                             | 17.50            | 6.38                               | 6.38             | 11.20                                                   | 11.20                               |  |  |  |
| nteraction:<br>shear transverse to channel: Shear parallel to channel: Pull-out:                                                                                                                                  |                  |                                    |                  |                                                         |                                     |  |  |  |
| $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}}$                                                                                                                                                           | ≤ 1              | $\frac{F_{Z}.Ed}{F_{Z}.Rd} \leq 1$ |                  | $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}}$ | $+ \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$ |  |  |  |

### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 36

2/2


### MQW-L-6/2 Rail support

| Possible loading cases |           |  |  |  |
|------------------------|-----------|--|--|--|
| Centric                | Eccentric |  |  |  |
|                        |           |  |  |  |

| Loading case: Eccentric                                                     |                             | Combinations covered by loading case                             |
|-----------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|
| BOM:<br>1x MQW-L-6/2<br>2x MQM-M10 wing nut<br>2x M10x20 hexagon head screw | 2141928<br>369626<br>216453 | Rail support connecting perpendicularly channel to base material |



| Design loading capacity - 3D                                                                         | 1/2                  |
|------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                               |                      |
| Veid strungth Capacity limit<br>Design load<br>Sold strungth<br>1.6<br>Live hald<br>Action Residence |                      |
| Limiting components of capacity evaluated                                                            | in following tables: |
| 1. Steel connector                                                                                   | 2. Wing nuts         |



## MQW-L-6/2 Rail support

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loading cases |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Centric                | Eccentric |  |  |  |  |
|                        |           |  |  |  |  |

# Design loading capacity - 3D

#### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| +Fx,Rd<br>[kN]                                                                                                | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |  |
|---------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|--|
| 4.09                                                                                                          | 4.09             | 1.25             | 1.25             | 9.43             | 7.14             |  |
| +Mx,Rd<br>[kNcm]                                                                                              | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |  |
| 5.13                                                                                                          | 5.13             | 8.47             | 8.47             | 3.34             | 3.34             |  |
| nteraction:<br>x.Ed <sup>F</sup> y.Ed <sup>F</sup> z.Ed <sup>M</sup> x.Ed <sup>M</sup> y.Ed <sup>M</sup> z.Ed |                  |                  |                  |                  |                  |  |

|                   | +                 | +                 | +                 | +                 | + >               |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| F <sub>x Rd</sub> | F <sub>v Rd</sub> | F <sub>z Rd</sub> | M <sub>x Rd</sub> | M <sub>v Rd</sub> | M <sub>z Rd</sub> |

| +Fx,Rd<br>[kN]-Fx,Rd<br>[kN]+Fy,Rd<br>[kN]-Fy,Rd<br>[kN]+Fz,Rd<br>[kN]-Fz,Rd<br>[kN]4.914.910.881.0512.6012.60+Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]6.256.2535.0035.0022.4022.406.256.2535.0035.0022.4022.40ruir-out.ruir-out.Fy,Ed<br>Fy,Rd<br>Fy,Rd-Fx,Rd<br>Fx,Rd-Mz,Rd<br>[kNcm]nMQ-41 - 1.5mm thick channel:Fz,Ed<br>Fz,Rd-Fx,Rd<br>[kN]-Fy,Rd<br>[kN]-Fz,Rd<br>[kN]1.5mm thick channel:Fx,Rd<br>[kN]-Fx,Rd<br>[kN]-Fz,Rd<br>[kN]-Fz,Rd<br>[kN]2.450.600.7211.8611.86+Mx,Rd<br>[kN]-Mx,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.20htteraction:<br>ihear transverse to channel:Shear parallel to channel:<br>Fy,Rd<br>[kN]-Mz,Rd<br>[kN]4.254.2517.5017.5011.2011.20Pull-out:<br>Fx,Ed<br>Fx,Rd-Mz,Ed<br>[kNcm]Colspan="4">Pull-out:<br>Fx,Ed<br>Fx,Rd-Mz,Ed<br>[KNcm]-Mx,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]-My,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]-Mz,Rd<br>[kNcm                                                                                                                                                                                 | n MQ-41 -2mm thick channel profile                                                                                                                                                                                   |                  |                  |                  |                  |                  |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|---|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +Fx,Rd<br>[kN]                                                                                                                                                                                                       | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |   |
| +Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]6.256.2535.0035.0022.4022.40Shear parallel to channel:Function:<br>Shear parallel to channel:Function:<br>Fy,Ed $\frac{M_x.Ed}{M_x.Rd} \le 1$ $\frac{F_z.Ed}{F_z.Rd} \le 1$ Fz,Ed<br>Fy,Rd $\frac{M_x.Ed}{M_x.Rd} \le 1$ Fz,Ed<br>Fx,Rd $\frac{F_z.Ed}{F_z.Rd} \le 1$ FX,Rd<br>[kN] $\frac{F_y,Rd}{[kN]}$ $\frac{F_y,Rd}{[kN]}$ $\frac{F_z,Rd}{[kN]}$ $\frac{F_z,Rd}{[kN]}$ 2.452.450.600.7211.8611.86+Mx,Rd<br>[kNcm] $\frac{F_W,Rd}{[kNcm]}$ $\frac{F_W,Rd}{[kNcm]}$ $\frac{F_W,Rd}{[kNcm]}$ $\frac{F_W,Rd}{[kNcm]}$ Pull-out:Fy,Ed<br>$\frac{M_x,Rd}{[x,Rd]} \le 1$ Shear parallel to channel:Pull-out:F_x,Rd<br>$[kNcm]$ Pull-out:F_x,Ed<br>$\frac{M_x,Rd}{[kNcm]} \le 1$ Pull-out:F_x,Ed<br>$\frac{M_x,Rd}{[kNcm]} \le 1$ Pull-out:F_x,Ed<br>$\frac{M_x,Rd}{M_x,Rd} \le 1$ Fz,Ed<br>$\frac{F_z,Ed}{F_x,Rd} \le 1$ Fz,Ed<br>                                                                                                                                                                                                 | 4.91                                                                                                                                                                                                                 | 4.91             | 0.88             | 1.05             | 12.60            | 12.60            |   |
| 6.256.2535.0035.0022.4022.40Interaction:<br>ishear transverse to channel:Shear parallel to channel:Full-out. $F_{y,Ed} + M_{x,Rd} \leq 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \leq 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \leq 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \leq 1$ In MQ-41 - 1.5mm thick channel profile+Fx,Rd<br>[kN]-Fx,Rd<br>[kN]+Fy,Rd<br>[kN]-Fy,Rd<br>[kN]+Fz,Rd<br>[kN]2.452.450.600.7211.8611.86+Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.20Interaction:<br>interaction:<br>interaction:<br>inter transverse to channel:Fz_Ed<br>Fz_Ed<br>s_rdShear parallel to channel:Pull-out:<br>Fz_Ed<br>F_z,RdFz_Ed<br>Fz_Rd<br>s_1 $F_{y,Ed} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \leq 1$ Full-out:<br>Fz_Ed<br>F_{x,Rd} + My,Rd<br>s_RdShear parallel to channel:                                                                                                                                                                                                                                                                                     | +Mx,Rd<br>[kNcm]                                                                                                                                                                                                     | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |   |
| $\begin{array}{c} \begin{array}{c} \label{eq:product} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.25                                                                                                                                                                                                                 | 6.25             | 35.00            | 35.00            | 22.40            | 22.40            |   |
| $ \begin{array}{c c} F_{y,Rd} + \frac{M_{x,Rd}}{M_{x,Rd}} \leq 1 & \frac{F_{z,Rd}}{F_{z,Rd}} \leq 1 & \frac{F_{x,Rd}}{F_{z,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{y,Rd} + \frac{M_{x,Rd}}{M_{y,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{y,Rd}}{M_{z,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{x,Rd}}{M_{x,Rd}} + \frac{M_{z,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \end{array} \end{array} \right) \\ \hline \begin{array}{c} F_{x,Rd} + \frac{M_{x,Rd}}{M_{x,Rd}} + \frac{M_{x,Rd}}{M_{z,Rd}} \leq 1 \\ \hline \end{array} \end{array} $ | nteraction:                                                                                                                                                                                                          | e to channel:    | Shear parall     | el to channel:   | Fuil-out.        |                  | • |
| In MQ-41 - 1.5mm thick channel profile+Fx,Rd<br>[kN]-Fx,Rd<br>[kN]+Fy,Rd<br>[kN]-Fy,Rd<br>[kN]+Fz,Rd<br>[kN]-Fz,Rd<br>[kN]2.452.450.600.7211.8611.86+Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.20Near parallel to channel:<br>Spect of $\frac{F_{x,Ed}}{F_{x,Rd}} \neq \frac{M_{x,Ed}}{M_{y,Rd}} \neq \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{F_{y,Ed}}{F_{y,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1 \qquad \qquad \frac{F_{z,Ed}}{F_{z,Rd}} \leq 1 \qquad \qquad \frac{F_{x,Ed}}{F_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$ |                  |                  |                  |                  |                  |   |
| +Fx,Rd<br>[kN]-Fx,Rd<br>[kN]+Fy,Rd<br>[kN]-Fy,Rd<br>[kN]+Fz,Rd<br>[kN]-Fz,Rd<br>[kN]2.452.450.600.7211.8611.86+Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.20hear transverse to channel:<br>$\frac{F_{y,Ed}}{F_{x,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \le 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \le 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | In MQ-41 -                                                                                                                                                                                                           | 1.5mm thic       | k channel        | profile          |                  |                  |   |
| 2.452.450.600.7211.8611.86+Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.204.254.2517.5017.5011.2011.20Netraction:<br>Shear parallel to channel:Shear parallel to channel:<br>$\frac{F_{z,Ed}}{F_{z,Rd}} \le 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \le 1$ $\frac{F_{z,Ed}}{F_{z,Rd}} \le \frac{M_{z,Ed}}{M_{z,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +Fx,Rd<br>[kN]                                                                                                                                                                                                       | -Fx,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fz,Rd<br>[kN]   | -Fz,Rd<br>[kN]   |   |
| +Mx,Rd<br>[kNcm]-Mx,Rd<br>[kNcm]+My,Rd<br>[kNcm]-My,Rd<br>[kNcm]+Mz,Rd<br>[kNcm]-Mz,Rd<br>[kNcm]4.254.2517.5017.5011.2011.20interaction:<br>interaction:<br>interaction:<br>ishear transverse to channel:Shear parallel to channel:<br>$F_{z,Ed} + \frac{M_{x,Ed}}{M_{x,Rd}} \le 1$ $F_{z,Ed} \le 1$ $F_{z,Ed} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.45                                                                                                                                                                                                                 | 2.45             | 0.60             | 0.72             | 11.86            | 11.86            |   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +Mx,Rd<br>[kNcm]                                                                                                                                                                                                     | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |   |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.25                                                                                                                                                                                                                 | 4.25             | 17.50            | 17.50            | 11.20            | 11.20            |   |
| $F_{y,Rd} + \frac{x_{Rd}}{M_{x,Rd}} \le 1 \qquad \frac{z_{LC}}{F_{z,Rd}} \le 1 \qquad F_{x,Rd} + \frac{w_{y,Rd}}{M_{y,Rd}} + \frac{w_{z,Rd}}{M_{z,Rd}} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interaction:<br>Shear transverse to channel: Shear parallel to channel: Pull-out:<br>Fund My Ed Fanter Fx:Ed My.Ed Mz.Ed                                                                                             |                  |                  |                  |                  |                  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                      |                  |                  |                  |                  |                  |   |

Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 38

2/2

| Designation | Item number |
|-------------|-------------|
| MQP-41      | 2141927     |
|             |             |

### Corrosion protection:

Electro galvanized

### Weight:

587g

### Submittal text:

Base connector for installation channels at 90°. Welded base plate gives stiffness and bending load capacity. Usage with two MQN channel connectors. Fixation holes at the three sides of the connector allowing rotation of channel open side - when used with 41x41 or 41x21D channels. Two anchor holes with dimensions 18x11mm.

#### Material properties:

| • •          |                    |                         |                     |                            |
|--------------|--------------------|-------------------------|---------------------|----------------------------|
| Material     | Yield strength     | Ultimate strength       | E-modulus           | Shear modulus              |
| S235JR -     | f = 235 N          | $f = 360 - \frac{N}{N}$ | E = 210000 <u>N</u> | $G = 80769 \frac{N}{N}$    |
| DIN EN 10025 | $m_y = 233$ $mm^2$ | $mm^2$                  | $mm^2$              | $d = 80703 \frac{1}{mm^2}$ |

### **Instruction For Use:**



### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 39





| Possible loading cases |           |  |  |  |
|------------------------|-----------|--|--|--|
| Centric                | Eccentric |  |  |  |
|                        |           |  |  |  |

#### Design criteria used for loading capacity

#### Methodology:

· Finite element analysis

| • | Standards | and | codes: |
|---|-----------|-----|--------|
|---|-----------|-----|--------|

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

#### Software:

- Ansys 16.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:





| Possible loading cases |           |  |  |  |
|------------------------|-----------|--|--|--|
| Centric                | Eccentric |  |  |  |
|                        |           |  |  |  |

| Loading case: Centric                                  | Combinations covered by loading case                             |
|--------------------------------------------------------|------------------------------------------------------------------|
| BOM:<br>1x MQP-41 2141927<br>2x MQN push button 369623 | Rail support connecting perpendicularly channel to base material |



| Design loading capacity - 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                 | 1/:      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|----------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |          |
| Ved storyth Design load<br>Capacity linit<br>Design load<br>Capacity linit<br>Linit linit li |                 | in following to |          |
| 1. Steel connector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Push buttons |                 | 3. Welds |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loading cases |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Centric                | Eccentric |  |  |  |  |
|                        |           |  |  |  |  |

### Design loading capacity - 3D

#### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| For MQ-41 - 1.5mm thick channel profile |                  |                  |                  |                  |                  |
|-----------------------------------------|------------------|------------------|------------------|------------------|------------------|
| +Fx,Rd [kN]                             | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN       |
| 3.00 / 4.50*                            | 3.00 / 4.50*     | 3.00             | 3.00             | 7.00             | 7.00             |
| +Mx,Rd<br>[kNcm]                        | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 14.00                                   | 14.00            | 20.00            | 20.00            | 6.00             | 6.00             |

### \* For MQ-41 - 2mm thick channel profile Interaction: $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

| +Fx,Rd          | -Fx,Rd          | +Fy,Rd          | -Fy,Rd          | +Fz,Rd | -Fz,Rd |
|-----------------|-----------------|-----------------|-----------------|--------|--------|
| [kN]            | [kN]            | [kN]            | [kN]            | [kN]   | [kN]   |
| Not<br>decisive | Not<br>decisive | 7.00            | 7.00            | 11.86  | 11.86  |
| +Mx,Rd          | -Mx,Rd          | +My,Rd          | -My,Rd          | +Mz,Rd | -Mz,Rd |
| [kNcm]          | [kNcm]          | [kNcm]          | [kNcm]          | [kNcm] | [kNcm] |
| 24.50           | 24.50           | Not<br>decisive | Not<br>decisive | 11.20  | 11.20  |

Interaction:

For local normal resistance

$$\frac{F_{z.Ed}}{F_{z.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

For local shear resistance parallel to channel

 $\frac{F_{z.Ed}}{2} \leq 1$ F<sub>z.Rd</sub>

Installation Technical Manual - Technical Data - MQ system light & project

2/3



### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

#### 3. Welds



| +Fx,Rd [kN]                                                                                                                                                                   | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|--|
| 10.12                                                                                                                                                                         | 10.12            | 5.14             | 5.14             | 13.00            | 13.00            |  |
| +Mx,Rd<br>[kNcm]                                                                                                                                                              | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |  |
| 28.45                                                                                                                                                                         | 28.45            | 38.00            | 38.00            | 8.89             | 8.89             |  |
| Interaction:                                                                                                                                                                  |                  |                  |                  |                  |                  |  |
| $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$ |                  |                  |                  |                  |                  |  |

Installation Technical Manual - Technical Data - MQ system light & project

3/2



| Possible loading cases |           |  |  |  |
|------------------------|-----------|--|--|--|
| Centric                | Eccentric |  |  |  |
|                        |           |  |  |  |

| Loading case: Eccentric                                | Combinations covered by loading case                             |
|--------------------------------------------------------|------------------------------------------------------------------|
| BOM:<br>1x MQP-41 2141927<br>2x MQN push button 369623 | Rail support connecting perpendicularly channel to base material |



| Design loading capacity - 3D | )               |                 |          | 1/3 |
|------------------------------|-----------------|-----------------|----------|-----|
| Method                       |                 |                 |          |     |
| Limiting components of capa  | acity evaluated | in following ta | ıbles:   |     |
| 1. Steel connector           | 2. Push button  |                 | 3. Welds |     |



#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loading cases |           |  |  |  |
|------------------------|-----------|--|--|--|
| Centric                | Eccentric |  |  |  |
|                        |           |  |  |  |

### Design loading capacity - 3D

#### Summary of design loads\*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| or MQ-41 - 1.5mm thick channel profile |                  |                  |                  |                  |                  |
|----------------------------------------|------------------|------------------|------------------|------------------|------------------|
| +Fx,Rd [kN]                            | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
| 5.50                                   | 5.50             | 1.70             | 1.70             | 7.00             | 7.00             |
| +Mx,Rd<br>[kNcm]                       | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 9.00                                   | 9.00             | 35.00            | 35.00            | 6.00             | 6.00             |

#### Interaction:

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$ 

#### 2. Push buttons



#### For MQ-41 - 1.5mm thick channel profile

| +Fx,Rd | -Fx,Rd | +Fy,Rd | -Fy,Rd | +Fz,Rd | -Fz,Rd |
|--------|--------|--------|--------|--------|--------|
| [kN]   | [kN]   | [kN]   | [kN]   | [kN]   | [kN]   |
| 7.00   | 7.00   | 1.70   | 1.70   | 11.86  | 11.86  |
| +Mx,Rd | -Mx,Rd | +My,Rd | -My,Rd | +Mz,Rd | -Mz,Rd |
| [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] | [kNcm] |
| 5.95   | 5.95   | 35.52  | 35.52  | 11.20  | 11.20  |

#### Interaction:

For local normal resistance

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$ 

For local shear resistance parallel to channel

 $\frac{F_{z.Ed}}{1} \leq 1$ 

F<sub>z.Rd</sub> For local shear resistance perpendicular to channel

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$ 

#### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 45

2/3



### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

### 3. Welds



| +Fx,Rd [kN]                                                                                                                                                           | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| 12.92                                                                                                                                                                 | 12.92            | 5.03             | 5.03             | 16.60            | 16.60            |
| +Mx,Rd<br>[kNcm]                                                                                                                                                      | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 14.23                                                                                                                                                                 | 14.23            | 38.00            | 38.00            | 8.89             | 8.89             |
| Interaction:                                                                                                                                                          |                  |                  |                  |                  |                  |
| $\frac{x.Ed}{x.Rd} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$ |                  |                  |                  |                  |                  |

Installation Technical Manual - Technical Data - MQ system light & project

3/2



#### **MQ System Light & Project**

### M8 Threaded rod channel through bolt

| Designation       If         M8 Threaded rod channel through bolt       AM8x1000 4.8 threaded rod       3         AM8x2000 4.8 threaded rod       3         AM8x3000 4.8 threaded rod       3         M8 nut       2         Corrosion protection:       3         Threaded rod       galvanized 5µm         Washer       galvanized 5µm         Weight:       3         Threaded rod       - as per used length         Washer       - 27g         Nut       - 5g | tem number<br>339793<br>339794<br>216415<br>82856<br>216465<br>M = 8 mm<br>DI = 8,4 mm<br>DA = 40 mm<br>H = 7 mm<br>W = 13 mm<br>W = 13 mm<br>Package content<br>Individual items |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material was neutron.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |

| material properties.                 |                               |                                |                             |                            |
|--------------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------|
| Material                             | Yield strength                | Ultimate strength              | E-modulus                   | Shear modulus              |
| Threaded rod                         |                               |                                |                             |                            |
| Steel grade 4.8 DIN 976-1            | $F_y = 320 \frac{N}{mm^2}$    | $F_{u} = 400 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Washer                               |                               |                                |                             |                            |
| Steel S235JR/DD11MOD                 |                               |                                |                             |                            |
| DIN EN 10025-2 2005.4/HN 547 2004.10 | $F_y = 235 \frac{N}{mm^2}$    | $F_{u} = 360 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | $G = 80769 \frac{N}{mm^2}$ |
| Nut                                  | - mm                          | nin                            | mm                          | min                        |
| Steel grade 8                        | $F_{y} = 640  \frac{N}{mm^2}$ | $F_{u} = 800 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |

#### **Instruction For Use:**

Simplified, not attached to the packaging Loading case "Both sides,,





### M8 Threaded rod channel through bolt

| Possible loading cases |  |  |
|------------------------|--|--|
| Both sides             |  |  |
|                        |  |  |

#### Design criteria used for loading capacity

#### Methodology:

• Finite element analysis

#### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

#### Software:

- Ansys 16.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:



#### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 48



# M8 Threaded rod channel through bolt

| Possible loading cases |  |  |
|------------------------|--|--|
| Both sides             |  |  |
|                        |  |  |

| Loading case: Both sides                                                                     | Combinations covered by loading case                                                                                                               |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| BOM:<br>2x A 8,4/40 washer 282856<br>2x M8 nut 216465<br>1x AM8x1000 4.8 threaded rod 339793 | Threaded rod connection through bolting the channel -<br>opened up or down secured by two large washers and<br>nuts from both sides of the channel |

| Recommended loading capacity - simplified                    | d for most common a | applications                                                                                                                                                                  |                          |
|--------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Method                                                       |                     |                                                                                                                                                                               | 7 190                    |
| Yield strength                                               |                     | [kN] [kN] [k                                                                                                                                                                  | <n]< th=""></n]<>        |
| Permissible stress                                           | Z                   | 2.                                                                                                                                                                            | .50                      |
| Characteristic load Setf weight Live loads Action Resistance | yx                  | These values are individual one directional ma<br>capacity limits. For any combinations of multip<br>directions, use design values and their corresp<br>interaction formulas. | aximal<br>ale<br>bonding |

| Design loading capacity - 3D                                                                                              | 1/2                  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                    |                      |
| Ved strength<br>Design load<br>Capacity linit<br>Capacity linit<br>Linit Linit<br>Linit Linit Linit<br>Action Perspirator |                      |
| Limiting components of capacity evaluated                                                                                 | in following tables: |
| 1. Washer and nut                                                                                                         |                      |



# M8 Threaded rod channel through bolt

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loadi | Possible loading cases |  |  |
|----------------|------------------------|--|--|
| Both sides     |                        |  |  |
|                |                        |  |  |

### Design loading capacity - 3D

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 3.50             | 3.50             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

2/2



#### **MQ System Light & Project**

# M10 Threaded rod channel through bolt

| Designation<br>M10 Threaded                                                                 | rod channel through bolt<br>AM10x1000 4.8 threaded rod<br>AM10x2000 4.8 threaded rod<br>AM10x3000 4.8 threaded rod<br>A 10,5/40 washer<br>M10 nut | Item number<br>339795<br>339796<br>216418<br>282857<br>216466 | M = 10  mm $DI = 10.5  mm$                                   |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|
| Corrosion prot<br>Threaded rod<br>Washer<br>Nut<br>Weight:<br>Threaded rod<br>Washer<br>Nut | fection:<br>galvanized 5µm<br>galvanized 5µm<br>galvanized 5µm<br>- as per used length<br>- 27g<br>- 10g                                          |                                                               | H = 8 mm<br>W = 17 mm<br>Package content<br>Individual items |

| Material | properties. |
|----------|-------------|
| material | properties. |

| Material                             | Yield strength              | Ultimate strength              | E-modulus                   | Shear modulus              |
|--------------------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------|
| Threaded rod                         |                             |                                |                             |                            |
| Steel grade 4.8 DIN 976-1            | $F_y = 320 \frac{N}{mm^2}$  | $F_{u} = 400 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Washer                               | nin                         | mm                             | nin                         | nunc                       |
| Steel S235JR/DD11MOD                 |                             |                                |                             |                            |
| DIN EN 10025-2 2005.4/HN 547 2004.10 | $F_y = 235 \frac{N}{mm^2}$  | $F_{u} = 360 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = $80769 \frac{N}{mm^2}$ |
| Nut                                  |                             |                                |                             |                            |
| Steel grade 8                        | $F_y = 640  \frac{N}{mm^2}$ | $F_{u} = 800 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
|                                      |                             |                                |                             |                            |

#### Instruction For Use:

Simplified, not attached to the packaging Loading case "Both sides,,



![](_page_51_Picture_0.jpeg)

### M10 Threaded rod channel through bolt

| Possible loadi | ng cases |  |
|----------------|----------|--|
| Both sides     |          |  |
|                |          |  |

#### Design criteria used for loading capacity

#### Methodology:

• Finite element analysis

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

#### Software:

- Ansys 16.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:

![](_page_51_Figure_17.jpeg)

#### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 52

![](_page_52_Picture_0.jpeg)

# M10 Threaded rod channel through bolt

| Possible loadi | ng cases |  |
|----------------|----------|--|
| Both sides     |          |  |
| - 3 - 3        |          |  |

| Loading case: Both sides                                                                        | Combinations covered by loading case                                                                                                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| BOM:<br>2x A 10,5/40 washer 282857<br>2x M10 nut 216466<br>1x AM10x1000 4.8 threaded rod 339795 | Threaded rod connection through bolting the channel -<br>opened up or down secured by two large washers and<br>nuts from both sides of the channel |

| Recommended loading capacity - simplified for most common applications |                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Method                                                                 | +Ex rec +Ev rec +Ez rec                                                                                                                                                           |  |  |  |  |
| Vield strength 1.4<br>Permissible stress Recommended                   | z 3.00                                                                                                                                                                            |  |  |  |  |
| Characteristic load Set weight<br>Live loads<br>Action Resistance      | These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas. |  |  |  |  |

| Design loading capacity - 3D                                                                                                                               | 1/2                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                                                     |                      |
| Design load         Expanding load           Design load         Expanding load           1.5         Expanding load           Live load         Penalarce |                      |
| Limiting components of capacity evaluated                                                                                                                  | in following tables: |
| 1. Washer and nut                                                                                                                                          |                      |

![](_page_53_Picture_0.jpeg)

# M10 Threaded rod channel through bolt

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loadi | ng cases |  |
|----------------|----------|--|
| Both sides     |          |  |
| -9-30          |          |  |

### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

![](_page_53_Picture_12.jpeg)

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 4.20             | 4.20             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

2/2

![](_page_54_Picture_0.jpeg)

| 312362<br>312363<br>312365 | M 840                                                          |
|----------------------------|----------------------------------------------------------------|
| 312367                     | P S S S S                                                      |
| 312368                     | 73° 35 30 20                                                   |
| 312369                     |                                                                |
|                            | M = 8 mm<br>L = see designation HHK 41 M8xL<br>Package content |
|                            |                                                                |
|                            | 312362<br>312363<br>312365<br>312367<br>312368<br>312369       |

| Material properties:                 |                                |                                |                             |                            |
|--------------------------------------|--------------------------------|--------------------------------|-----------------------------|----------------------------|
| Material                             | Yield strength                 | Ultimate strength              | E-modulus                   | Shear modulus              |
| Threaded rod                         |                                |                                |                             |                            |
| Steel grade 4.8 DIN 976-1            | $F_{y} = 320 \frac{N}{mm^{2}}$ | $F_{u} = 400 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Washer                               | , mm                           | mm                             | nun                         | mm                         |
| Steel S235JR/DD11MOD                 |                                |                                |                             |                            |
| DIN EN 10025-2 2005.4/HN 547 2004.10 | $F_v = 235 \frac{N}{mm^2}$     | $F_{u} = 360 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | $G = 80769 \frac{N}{mm^2}$ |
| Nut                                  | , mm                           | mm                             | mm                          | mm                         |
| Steel grade 8                        | $F_y = 640  \frac{N}{mm^2}$    | $F_u = 800 \frac{N}{mm^2}$     | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |

#### Instruction For Use:

HHK 41 M8X100 - 94g HHK 41 M8X120 -100g HHK 41 M8X150 - 110g

Simplified, not attached to the packaging

![](_page_54_Figure_8.jpeg)

### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 55

![](_page_55_Picture_0.jpeg)

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

#### Design criteria used for loading capacity

#### Methodology:

· Finite element analysis

#### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

#### Software:

- Ansys 16.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:

![](_page_55_Figure_17.jpeg)

L = see designation HHK 41 M8xL

![](_page_56_Picture_0.jpeg)

| Possible loadi | ng cases |  |  |
|----------------|----------|--|--|
| Standard       |          |  |  |
|                |          |  |  |

| Loading case: Standard                                                                                                                                                                                                                                               | Combinations covered by loading case                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| BOM:         1x HHK         HHK 41 M8X40       312361         HHK 41 M8X50       312362         HHK 41 M8X60       312363         HHK 41 M8X80       312365         HHK 41 M8X100       312365         HHK 41 M8X120       312367         HHK 41 M8X150       312368 | Threaded bolt connection into a channel using simple channel nut, large washer and nut |

![](_page_56_Figure_6.jpeg)

| Design loading capacity - 3D                                                                             | 1/2                  |
|----------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                   |                      |
| Vad stevryth<br>Design load<br>Capacity linit<br>Capacity linit<br>1.5<br>Line load<br>Action Pagestance |                      |
| Limiting components of capacity evaluated                                                                | in following tables: |
| 1. T-bolt                                                                                                |                      |

![](_page_57_Picture_0.jpeg)

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Washer and nut

![](_page_57_Picture_13.jpeg)

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 3.50             | 3.50             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

<u>2/2</u>

![](_page_58_Picture_0.jpeg)

| Designation    | Item number |
|----------------|-------------|
| HHK 41 M10X40  | 312371      |
| HHK 41 M10X60  | 312373      |
| HHK 41 M10X80  | 312374      |
| HHK 41 M10X100 | 312375      |
| HHK 41 M10X150 | 312377      |

#### **Corrosion protection:**

| Threaded rod   | galvanized 5µm  |
|----------------|-----------------|
| Washer         | galvanized 5µm  |
| Nut            | galvanized 5µm  |
| Weight:        |                 |
| HHK 41 M10X40  | - 77g           |
| HHK 41 M10X60  | - 92g           |
| HHK 41 M10X80  | - 105 g         |
| HHK 41 M10X100 | <b>)</b> - 116g |
| HHK 41 M10X150 | <b>)</b> - 141g |

![](_page_58_Figure_7.jpeg)

| Material properties:                 |                               |                                |                             |                            |
|--------------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------|
| Material                             | Yield strength                | Ultimate strength              | E-modulus                   | Shear modulus              |
| Threaded rod                         |                               |                                |                             |                            |
| Steel grade 4.8 DIN 976-1            | $F_y = 320 \frac{N}{mm^2}$    | $F_{u} = 400 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Washer                               |                               |                                |                             |                            |
| Steel S235JR/DD11MOD                 |                               |                                |                             |                            |
| DIN EN 10025-2 2005.4/HN 547 2004.10 | $F_v = 235 \frac{N}{mm^2}$    | $F_{u} = 360 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | $G = 80769 \frac{N}{mm^2}$ |
| Nut                                  | , mm                          | nm                             | mm                          | mm                         |
| Steel grade 8                        | $F_{y} = 640  \frac{N}{mm^2}$ | $F_{u} = 800 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |

#### **Instruction For Use:**

Simplified, not attached to the packaging

![](_page_58_Figure_11.jpeg)

![](_page_59_Picture_0.jpeg)

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

#### Design criteria used for loading capacity

#### Methodology:

• Finite element analysis

### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |

#### Software:

- Ansys 16.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:

![](_page_59_Figure_17.jpeg)

![](_page_60_Picture_0.jpeg)

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

| Loading case: Standard                                                                                                                   | Combinations covered by loading case                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| BOM:<br>1x HHK<br>HHK 41 M10X40 312371<br>HHK 41 M10X60 312373<br>HHK 41 M10X80 312374<br>HHK 41 M10X100 312375<br>HHK 41 M10X150 312377 | Threaded bolt connection into a channel using simple channel nut, large washer and nut |

![](_page_60_Figure_6.jpeg)

| Design loading capacity - 3D                                                            | 1/2                  |
|-----------------------------------------------------------------------------------------|----------------------|
| Method                                                                                  |                      |
| Vad stevryth<br>Design load<br>Capacity linit<br>1.5<br>Linis load<br>Action Presidence |                      |
| Limiting components of capacity evaluated                                               | in following tables: |
| 1. T-bolt                                                                               |                      |

![](_page_61_Picture_0.jpeg)

### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures

| Possible loading cases |  |  |
|------------------------|--|--|
| Standard               |  |  |
|                        |  |  |

### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Washer and nut

![](_page_61_Picture_13.jpeg)

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  | 4.20             | 4.20             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm

Installation Technical Manual - Technical Data - MQ system light & project

<u>2/2</u>

![](_page_62_Picture_0.jpeg)

| Designation  | Item number |
|--------------|-------------|
| MQK-L-21/200 | 2141924     |
| MQK-L-21/300 | 2141925     |
| MQK-L-21/450 | 2141926     |
| MQK-L-21/450 | 2141926     |

### Corrosion protection:

Sendzimir galvanized

### Weight:

MQK-L-21/200 - 437g MQK-L-21/300 - 581g MQK-L-21/450 - 797g

### Submittal text:

L-shape bent installation bracket with channel section 41x21x2mm. Two anchor holes 16x11mm on the short side and elongated holes with step 50mm on the long side. Direct fixation with anchors to base material or to other channels with two MQM-M10 wing nuts and M10x20 screws. Usage with open side up or down.

### Material properties:

| Material                 | Yield strength             | Ultimate strength          | E-modulus                   | Shear modulus              |  |
|--------------------------|----------------------------|----------------------------|-----------------------------|----------------------------|--|
| S235JR -<br>DIN EN 10025 | $f_y = 235 \frac{N}{mm^2}$ | $f_u = 360 \frac{N}{mm^2}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |  |

### Instruction For Use:

Simplified, not attached to the packaging

![](_page_62_Figure_15.jpeg)

### Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 63

![](_page_62_Figure_18.jpeg)

![](_page_63_Picture_0.jpeg)

| Possible loading cases                                                |  |                                  |                  |
|-----------------------------------------------------------------------|--|----------------------------------|------------------|
| Bracket only Fixed to the wall Fixed to the with HST3 - M10 with HUS3 |  | Fixed to the wall with HUS3 - H8 | Fixed on channel |
|                                                                       |  |                                  |                  |

#### Design criteria used for loading capacity

#### Methodology:

- Analytic calculation
- · Hardware tests

#### Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 03.2012 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 09.2010 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 06.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |
|   |             |                                                               |         |

#### Software:

- Mathcad 15.0
- Microsoft Excel

#### **Environmental conditions:**

- static loads
- no fatigue loads

#### Simplified drawing:

![](_page_63_Figure_18.jpeg)

L = see designation MQK-L21/L

![](_page_64_Picture_0.jpeg)

| Possible loading cases |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|
| Bracket only           | Fixed to the wall with HST3 - M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fixed to the wall<br>with HUS3 - H8 | Fixed on channel |
|                        | Jan and Jan an |                                     |                  |

| Loading case: Bracket only                                                                  | Combinations covered by loading case |
|---------------------------------------------------------------------------------------------|--------------------------------------|
| BOM:<br>1x MQK-L-21<br>MQK-L-21/200 2141924<br>MQK-L-21/300 2141925<br>MQK-L-21/450 2141926 | Bracket ready to use                 |

![](_page_64_Figure_6.jpeg)

| Design loading capacity - 3D                                                                      | 1/2                  |
|---------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                            |                      |
| Veld storugh Capacity limit<br>Design load<br>Design load<br>1.5<br>Live load<br>Action Peendance |                      |
| Limiting components of capacity evaluated                                                         | in following tables: |
| 1. Steel part of the bracket                                                                      |                      |

![](_page_65_Picture_0.jpeg)

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

![](_page_65_Figure_8.jpeg)

### Design loading capacity - 3D

### 2/2

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket

| y x |
|-----|
|     |
| v   |

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 1.66             | 2.41             | 4.35             | 4.35             | 10.58            | 10.58            |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 1.04             | 1.04             | 12.50            | 12.50            | 1.04             | 1.04             |
| Interaction:     |                  |                  |                  |                  |                  |

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$ 

![](_page_66_Picture_0.jpeg)

| Bracket only     Fixed to the wall with HST3 - M10     Fixed to the wall with HUS3 - H8     Fixed on channel       Image: Ima | Possible loading cases |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bracket only           | Fixed to the wall with HST3 - M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fixed to the wall with HUS3 - H8 | Fixed on channel |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | A Contraction of the second se | T.                               |                  |  |

| Loading case: Fixed to the wall with HST3 - M10                                                                                                                                                                                          | Combinations covered by loading case                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| BOM:         1x MQK-L-21         MQK-L-21/200       2141924         MQK-L-21/300       2141925         MQK-L-21/450       2141926         2x HST3 M10x90 30/10 stud anchor       2105712         2x MQZ-E21 plastic end cap       370598 | Bracket fixed to concrete (B20/25) wall with two HST3<br>M10 anchors |  |

![](_page_66_Figure_6.jpeg)

| Design loading capacity - 3D                                                                    | )               |                 | 1/3                                 |
|-------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------------------------|
| Method                                                                                          |                 |                 |                                     |
| Veld strength Design load Capacity Init Capacity Init Capacity Init Live load Action Resistance |                 |                 |                                     |
| Limiting components of capa                                                                     | acity evaluated | in following ta | ibles:                              |
| 1. Steel part of the bracket                                                                    | 2. Anchors      |                 | 3. Local checks (bearing, friction) |

![](_page_67_Picture_0.jpeg)

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

![](_page_67_Figure_8.jpeg)

### Design loading capacity - 3D

### 2/3

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

![](_page_67_Figure_13.jpeg)

| +Fx,Rd [kN]                                                                                                                                                      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| 1.66                                                                                                                                                             | 2.41             | 4.35             | 4.35             | 10.58            | 10.58            |
| +Mx,Rd<br>[kNcm]                                                                                                                                                 | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 1.04                                                                                                                                                             | 1.04             | 12.50            | 12.50            | 1.04             | 1.04             |
| nteraction:<br>$\frac{F_{x.Ed}}{F_{x.Ed}} + \frac{F_{y.Ed}}{F_{x.Ed}} + \frac{F_{x.Ed}}{M_{x.Ed}} + \frac{M_{y.Ed}}{M_{x.Ed}} + \frac{M_{z.Ed}}{M_{x.Ed}} \le 1$ |                  |                  |                  |                  |                  |

2. Anchors

![](_page_67_Figure_16.jpeg)

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 3.50             | 9.00             | 10.00            | 10.00            | 16.00            | 16.00            |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 90.00            | 90.00            | 48.00            | 45.00            | 11.75            | 11.75            |

**Note:** For load cases Fy and Mx, also the anchor in slotted hole parallel to force must be statically considered.

If slotted hole is not filled with dynamic set, additional deformation occur on connector to overcome slotted hole. Otherwise for unfilled holes refer to values shown in 3) which consider friction between washer and channel.

$$\frac{\mathsf{F}_{x.Ed}}{\mathsf{F}_{x.Rd}} + \frac{\mathsf{M}_{y.Ed}}{\mathsf{M}_{y.Rd}} + \frac{\mathsf{M}_{z.Ed}}{\mathsf{M}_{z.Rd}} = \beta_N \leq 1 \quad \frac{\mathsf{F}_{y.Ed}}{\mathsf{F}_{y.Rd}} + \frac{\mathsf{F}_{z.Ed}}{\mathsf{F}_{z.Rd}} + \frac{\mathsf{M}_{x.Ed}}{\mathsf{M}_{x.Rd}} = \beta_V \leq 1$$

$$\beta_{N} + \beta_{V} \le 1.2$$

![](_page_68_Picture_0.jpeg)

3/3

# **MQK-L-21 Bracket**

### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

#### 3. Local checks (bearing, friction)

![](_page_68_Picture_8.jpeg)

| +Fx,Rd          | -Fx,Rd          | +Fy,Rd         | -Fy,Rd          | +Fz,Rd          | -Fz,Rd          |
|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|
| [kN]            | [kN]            | [kN]           | [kN]            | [kN]            | [kN]            |
| Not<br>decisive | Not<br>decisive | 0.57           | 0.57            | 4.32            | 7.92            |
| +Mx,Rd          | -Mx,Rd          | +My,Rd         | -My,Rd          | +Mz,Rd          | -Mz,Rd          |
| [kNcm]          | [kNcm]          | [kNcm]         | [kNcm]          | [kNcm]          | [kNcm]          |
| 2.29            | 2.29            | Not<br>deceive | Not<br>decisive | Not<br>decisive | Not<br>decisive |

#### Interaction:

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$ 

![](_page_69_Picture_0.jpeg)

| Possible loading cases |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|--|
| Bracket only           | Fixed to the wall with HST3 - M10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fixed to the wall with HUS3 - H8 | Fixed on channel |  |
|                        | Jan and Jan an |                                  |                  |  |

| Loading case: Fixed to the wall with HUS3 - H8                                                                                                                                                                                            | Combinations covered by loading case                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| BOM:         1x MQK-L-21         MQK-L-21/200       2141924         MQK-L-21/300       2141925         MQK-L-21/450       2141926         2x HUS3-H 8x55 5/-/- screw anchor       2079794         2x MQZ-E21 plastic end cap       370598 | Bracket fixed to concrete (B20/25) wall with two HUS3<br>H 8 anchors |

![](_page_69_Figure_6.jpeg)

| Design loading capacity - 3D                                                                                                                                                    |            |                 | 1/3                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------------------------------|
| Method                                                                                                                                                                          |            |                 |                                     |
| Ved strength out<br>Design load<br>Capacity linit<br>Capacity linit<br>Capacity linit<br>Capacity linit<br>Capacity linit<br>Capacity linit<br>Capacity linit<br>Capacity linit |            | in following to | blac.                               |
| 1. Steel part of the bracket                                                                                                                                                    | 2. Anchors |                 | 3. Local checks (bearing, friction) |

![](_page_70_Picture_0.jpeg)

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

![](_page_70_Figure_8.jpeg)

### **Design loading capacity - 3D**

### 2/3

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket

![](_page_70_Picture_14.jpeg)

| +Fx,Rd [kN]                                                             | -Fx,Rd [kN]                                             | +Fy,Rd [kN]                                             | -Fy,Rd [kN]                        | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|-------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------|------------------|------------------|
| 1.66                                                                    | 2.41                                                    | 4.35                                                    | 4.35                               | 10.58            | 10.58            |
| +Mx,Rd<br>[kNcm]                                                        | -Mx,Rd<br>[kNcm]                                        | +My,Rd<br>[kNcm]                                        | -My,Rd<br>[kNcm]                   | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 1.04                                                                    | 1.04                                                    | 12.50                                                   | 12.50                              | 1.04             | 1.04             |
| Interaction:<br>$\frac{F_{x.Ed}}{F_{x.Ed}} + \frac{F_{y.Ec}}{F_{x.Ed}}$ | $\frac{d}{d} + \frac{F_{z.Ed}}{F_{z.Ed}} + \frac{N}{N}$ | $\frac{M_{x.Ed}}{M_{x.Ed}} + \frac{M_{y.Ed}}{M_{x.Ed}}$ | $+\frac{M_{z.Ed}}{M_{z.Ed}} \le 1$ |                  |                  |

2. Anchors

![](_page_70_Picture_17.jpeg)

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 3.00             | 7.50             | 4.40             | 4.40             | 8.30             | 8.30             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 40.00            | 40.00            | 29.00            | 28.00            | 8.00             | 8.00             |

# Embedment depth 60mm , concrete slab (base material) min. thickness 120mm, concrete quality >C20/25

**Note:** For load cases Fy and Mx, also the anchor in slotted hole parallel to force must be statically considered.

If slotted hole is not filled with dynamic set, additional deformation occur on connector to overcome slotted hole. Otherwise for unfilled holes refer to values shown in 3) which consider friction between

 $\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} = \beta_N \leq 1 - \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} = \beta_V \leq 1$ 

 $\beta_{N} + \beta_{V} \le 1.2$ 

![](_page_71_Picture_0.jpeg)

3/3

## **MQK-L-21 Bracket**

### **Design loading capacity - 3D**

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

#### 3. Local checks (bearing, friction)

![](_page_71_Picture_8.jpeg)

| +Fx,Rd          | -Fx,Rd          | +Fy,Rd         | -Fy,Rd          | +Fz,Rd          | -Fz,Rd          |
|-----------------|-----------------|----------------|-----------------|-----------------|-----------------|
| [kN]            | [kN]            | [kN]           | [kN]            | [kN]            | [kN]            |
| Not<br>decisive | Not<br>decisive | 0.57           | 0.57            | 4.32            | 7.92            |
| +Mx,Rd          | -Mx,Rd          | +My,Rd         | -My,Rd          | +Mz,Rd          | -Mz,Rd          |
| [kNcm]          | [kNcm]          | [kNcm]         | [kNcm]          | [kNcm]          | [kNcm]          |
| 2.29            | 2.29            | Not<br>deceive | Not<br>decisive | Not<br>decisive | Not<br>decisive |

#### Interaction:

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$


# **MQK-L-21 Bracket**

| Possible loading cases |                                      |                                  |                  |  |  |
|------------------------|--------------------------------------|----------------------------------|------------------|--|--|
| Bracket only           | Fixed to the wall<br>with HST3 - M10 | Fixed to the wall with HUS3 - H8 | Fixed on channel |  |  |
|                        | Jos mark                             |                                  |                  |  |  |

| Loading case: Fixed on channel                                                                                                                           |                                                             | Combinations covered by loading case |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------|
| BOM:<br>1x MQK-L-21<br>MQK-L-21/200<br>MQK-L-21/300<br>MQK-L-21/450<br>2x MQM-M10 wing nut<br>2x M10x20 hexagon head screw<br>2x MQZ-E21 plastic end cap | 2141924<br>2141925<br>2141926<br>369626<br>216453<br>370598 | Bracket fixed to MQ System channel   |



| Design loading capacity - 3D                                                                                                                    |                        |                 | 1/3                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|-------------------------------------|
| Method                                                                                                                                          |                        |                 |                                     |
| Ved strength   Design load     Design load   apparty limit     Design load   apparty limit     Live load   apparty limit     Acton   Resistance |                        |                 |                                     |
| Limiting components of capa                                                                                                                     | acity evaluated        | in following ta | bles:                               |
| 1. Steel part of the bracket                                                                                                                    | 2. Wing nuts in the ch | nannel          | 3. Local checks (bearing, friction) |



## **MQK-L-21 Bracket**

#### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures



### **Design loading capacity - 3D**

## 2/3

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel part of the bracket



| +Fx,Rd [kN]                                                                                                                                                                                                                                                                                                                                                                                          | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| 1.66                                                                                                                                                                                                                                                                                                                                                                                                 | 2.41             | 4.35             | 4.35             | 10.58            | 10.58            |
| +Mx,Rd<br>[kNcm]                                                                                                                                                                                                                                                                                                                                                                                     | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 1.04                                                                                                                                                                                                                                                                                                                                                                                                 | 1.04             | 12.50            | 12.50            | 1.04             | 1.04             |
| $ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \hline F_{x.Ed} \\ \hline F_{x.Rd} \end{array} + \displaystyle \frac{F_{y.Ed}}{F_{y.Rd}} + \displaystyle \frac{F_{z.Ed}}{F_{z.Rd}} + \displaystyle \frac{M_{x.Ed}}{M_{x.Rd}} + \displaystyle \frac{M_{y.Ed}}{M_{y.Rd}} + \displaystyle \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1 \end{array} \end{array} \end{array} $ |                  |                  |                  |                  |                  |

2.1. Wing nuts in the channel



#### in MQ/2mm thick wall channel as base

| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
| 4.35             | 12.64            | 0.69             | 0.69             | 7.00             | 7.00             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 6.25             | 6.25             | 46.11            | 44.01            | 11.13            | 11.13            |

Interaction:

Pull-out

Transverse shear (perpendicular to channel)

 $\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$ 

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$ 

**Note:** For load cases Fy and Mx, also the wing nut in the slotted hole parallel to force must be statically considered. Therefore additional deformation occur on connector to overcome slotted hole. Otherwise refer to values shown in 3) which consider friction between washer and channel.



3/3

# MQK-L-21 Bracket

## Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

#### 2.2. Wing nuts in the channel



| n MQ/1.5mm thick wall channel as base               |                  |                  |                  |                  |                  |
|-----------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| +Fx,Rd [kN]                                         | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
| 2.17                                                | 7.26             | 0.47             | 0.47             | 7.00             | 7.00             |
| +Mx,Rd<br>[kNcm]                                    | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
| 4.25                                                | 4.25             | 23.43            | 22.38            | 5.57             | 5.57             |
| Interaction:                                        |                  |                  |                  |                  |                  |
| Pull-out Transverse shear (nemendicular to channel) |                  |                  |                  |                  |                  |

**Note:** For load cases Fy and Mx, also the wing nut in the slotted hole parallel to force must be statically considered. Therefore additional deformation occur on connector to overcome slotted hole. Otherwise refer to values shown in 3) which consider friction between washer and channel.

 $\frac{\mathsf{F}_{x.\mathsf{Ed}}}{\mathsf{F}_{x.\mathsf{Rd}}} + \frac{\mathsf{M}_{y.\mathsf{Ed}}}{\mathsf{M}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{z.\mathsf{Ed}}}{\mathsf{M}_{z.\mathsf{Rd}}} \leq 1 \qquad \qquad \frac{\mathsf{F}_{y.\mathsf{Ed}}}{\mathsf{F}_{y.\mathsf{Rd}}} + \frac{\mathsf{M}_{x.\mathsf{Ed}}}{\mathsf{M}_{x.\mathsf{Rd}}} \leq 1$ 

3. Local checks (bearing, friction)



| -Fz,Rd<br>[kN]                                     | +Fz,Rd<br>[kN]   | -Fy,Rd<br>[kN]   | +Fy,Rd<br>[kN]   | -Fx,Rd<br>[kN]   | +Fx,Rd<br>[kN]   |
|----------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| 7.92                                               | 4.32             | 0.57             | 0.57             | Not<br>decisive  | Not<br>decisive  |
| -Mz,Rd<br>[kNcm]                                   | +Mz,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +Mx,Rd<br>[kNcm] |
| Not<br>decisive                                    | Not<br>decisive  | Not<br>decisive  | Not<br>deceive   | 2.29             | 2.29             |
| 2.29 2.29 140t decisive decisive decisive decisive |                  |                  |                  |                  |                  |

 $\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$ 



Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 76



### MQ System Light & Project

# HUS3-H8 Direct fixation to concrete

| Designation                                                                                  | Item number |  |  |  |  |
|----------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Channel                                                                                      |             |  |  |  |  |
| MQ-21 2m                                                                                     | 2148545     |  |  |  |  |
| MQ-21 3m                                                                                     | 2148544     |  |  |  |  |
| MQ-21 6m                                                                                     | 2148543     |  |  |  |  |
| MQ-41-L 2m                                                                                   | 2141966     |  |  |  |  |
| MQ-41-L 3m                                                                                   | 2141965     |  |  |  |  |
| MQ-41-L 6m                                                                                   | 2141964     |  |  |  |  |
| Screw anchor                                                                                 |             |  |  |  |  |
| HUS3 - H8x55 5/-/- screw anchor                                                              | 2079794     |  |  |  |  |
| Washer for loading case HUS-H8&W in channel slot                                             |             |  |  |  |  |
| A 10.5/20 washer                                                                             | 282851      |  |  |  |  |
| Corrosion protection:Channelsendzimir galvanized average 10µmScrew anchorzinc plated min 5µm |             |  |  |  |  |
| Weight:   Channel MQ-21   1430   g/m     Channel MQ-41-L   1600   g/m     Anchor   32.9   g  |             |  |  |  |  |



| material properties:        |                                |                                |                             |                            |
|-----------------------------|--------------------------------|--------------------------------|-----------------------------|----------------------------|
| Material                    | Yield strength                 | Ultimate strength              | E-modulus                   | Shear modulus              |
| Channel                     |                                |                                |                             |                            |
| Steel S250GD - DIN EN 10346 | $F_y = 290 \frac{N}{mm^2}$     | $F_{u} = 330 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Anchor                      |                                |                                |                             |                            |
| Carbon steel                | $F_{y} = 695 \frac{N}{mm^{2}}$ | $F_{u} = 810 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = $80769 \frac{N}{mm^2}$ |

### Instruction For Use:

Simplified, not attached to the packaging Loading case "HUS3-H8 in anchor hole,,



### Installation Technical Manual - Technical Data - MQ system light & project

Loading case "HUS3-H8&W (and M10 washer) in

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 77





### Design criteria used for loading capacity

### Methodology:

· Finite element analysis

### • Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |
|   |             |                                                               |         |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





| Possible loadi                                                                                                                      | ng cases                                 |                                                                           |                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| HUS3-H8<br>in rounded ,,anchor<br>hole,,.                                                                                           | HUS3-H8&W<br>in channel (oblong)<br>slot |                                                                           |                                                                                                   |
|                                                                                                                                     |                                          |                                                                           |                                                                                                   |
| Loading case: H                                                                                                                     | US3-H8 in rounded                        | I "anchor hole,,.                                                         | Combinations covered by loading case                                                              |
| BOM:<br>Channel<br>MQ-21 2m<br>MQ-21 3m<br>MQ-21 6m<br>MQ-41-L 2m<br>MQ-41-L 3m<br>MQ-41-L 6m<br>Screw anchor<br>HUS3 - H8x55 5/-/- |                                          | 2148545<br>2148544<br>2148543<br>2141966<br>2141965<br>2141964<br>2079794 | Direct fixation of channel on concrete fixed<br>by HUS3-H8 through ,,Anchor hole,, in the channel |

#### 

| Design loading capacity - 3D                                                        | 1/2                  |
|-------------------------------------------------------------------------------------|----------------------|
| Method                                                                              |                      |
| Vedd stergth Copacity find<br>Copacity find<br>1.5<br>Live tood<br>Action Residence |                      |
| Limiting components of capacity evaluated                                           | in following tables: |
| 1. Channel local pull through                                                       |                      |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures



### Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Channel local pull through



| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  |                  | 4.40             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm, min concrete quality C20/25, no edge influence, no other anchor distance influence, min concrete slab (base material) thickness 120mm

Installation Technical Manual - Technical Data - MQ system light & project



A 10.5/20 washer

## HUS3-H8 Direct fixation to concrete



#### 

282851

| Design loading capacity - 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |
| Ved strength Corporation Corporation International Corporational C |                      |
| Limiting components of capacity evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in following tables: |
| 1. Channel local pull through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures



### Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

| 1. Channel local pull through | +Fx,Rd [kN]              | -Fx,Rd [kN]                                     | +Fy,Rd [kN]                                    | -Fy,Rd [kN]                                     | +Fz,Rd [kN]                                 | -Fz,Rd [kN]               |
|-------------------------------|--------------------------|-------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------|
|                               |                          |                                                 |                                                |                                                 |                                             | 4.05                      |
|                               | +Mx,Rd<br>[kNcm]         | -Mx,Rd<br>[kNcm]                                | +My,Rd<br>[kNcm]                               | -My,Rd<br>[kNcm]                                | +Mz,Rd<br>[kNcm]                            | -Mz,Rd<br>[kNcm]          |
|                               | Condition: va<br>Cź<br>m | alid for chann<br>20/25, no ed<br>in concrete s | el edge dista<br>ge influence,<br>lab (base ma | ance ≥ 100mr<br>no other and<br>aterial) thickn | m, min concru<br>chor distance<br>ess 120mm | ete quality<br>influence, |

#### Installation Technical Manual - Technical Data - MQ system light & project



### **MQ System Light & Project**

# HST3-M10 Direct fixation to concrete

| Designation                               | Item number |
|-------------------------------------------|-------------|
| Channel                                   |             |
| MQ-21 2m                                  | 2148545     |
| MQ-21 3m                                  | 2148544     |
| MQ-21 6m                                  | 2148543     |
| MQ-41-L 2m                                | 2141966     |
| MQ-41-L 3m                                | 2141965     |
| MQ-41-L 6m                                | 2141964     |
| Stud anchor                               |             |
| HST3 M10x90 30/10 stud anchor             | 2105712     |
| Corrosion protection:                     |             |
| Channel sendzimir galvanized average 10µm |             |
| Screw anchor zinc plated min 5µm          |             |
| Weight:                                   |             |
| Channel MQ-21 1430 g/m                    |             |
| Channel MQ-41-L 1600 g/m                  |             |
| Anchor 58.0 g                             |             |



| Material properties:                             |                                |                                |                             |                            |
|--------------------------------------------------|--------------------------------|--------------------------------|-----------------------------|----------------------------|
| Material                                         | Yield strength                 | Ultimate strength              | E-modulus                   | Shear modulus              |
| Channel<br>Steel S250GD - DIN EN 10346<br>Anchor | $F_y = 290 \frac{N}{mm^2}$     | $F_u = 330 \frac{N}{mm^2}$     | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |
| Carbon steel                                     | $F_{y} = 640 \frac{N}{mm^{2}}$ | $F_{u} = 800 \frac{N}{mm^{2}}$ | $E = 210000 \frac{N}{mm^2}$ | G = 80769 $\frac{N}{mm^2}$ |

### Instruction For Use:

Simplified, not attached to the packaging







### Design criteria used for loading capacity

### Methodology:

· Finite element analysis

### • Standards and codes:

| • | EN 1990     | Basics of structural design                                   | 03.2003 |
|---|-------------|---------------------------------------------------------------|---------|
| • | EN 1991-1-1 | Eurocode 1: Actions on structures – Part 1-1: General         |         |
|   |             | actions – densities, self-weight, imposed loads for buildings | 09.2011 |
| • | EN 1993-1-1 | Eurocode 3: Design of steel structures – Part 1-1: General    |         |
|   |             | rules and rules for buildings                                 | 03.2012 |
| • | EN 1993-1-3 | Eurocode 3: Design of steel structures – Part 1-3: General    |         |
|   |             | rules- Supplementary rules for cold-formed members and        |         |
|   |             | sheeting                                                      | 03.2012 |
| • | EN 1993-1-5 | Eurocode 3: Design of steel structures – Part 1-5: Plated     |         |
|   |             | structural elements                                           | 03.2012 |
| • | EN 1993-1-8 | Eurocode 3: Design of steel structures – Part 1-8: Design of  |         |
|   |             | joints                                                        | 03.2012 |
| • | EN 10025-2  | Hot rolled products of structural steels- Part 2: technical   |         |
|   |             | delivery conditions for non-alloy structural steels           | 02.2005 |
| • | RAL-GZ 655  | Pipe Supports                                                 | 04.2008 |
|   |             |                                                               |         |

### Software:

- Ansys 16.0
- Microsoft Excel

### **Environmental conditions:**

- static loads
- no fatigue loads

### Simplified drawing:





| Possible loadi                                                                                                                                | ng cases                                |                                                                           |                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| HST3-M10<br>in rounded<br>,,anchor hole,,.                                                                                                    | HST3-M10<br>in channel<br>(oblong) slot |                                                                           |                                                                                                    |
|                                                                                                                                               |                                         |                                                                           |                                                                                                    |
| Loading case: St                                                                                                                              | tandard                                 |                                                                           | Combinations covered by loading case                                                               |
| BOM:<br>Channel<br>Channel<br>MQ-21 2m<br>MQ-21 3m<br>MQ-21 6m<br>MQ-41-L 2m<br>MQ-41-L 3m<br>MQ-41-L 6m<br>Screw anchor<br>HST3 M10x90 30/10 |                                         | 2148545<br>2148544<br>2148543<br>2141966<br>2141965<br>2141964<br>2105712 | Direct fixation of channel on concrete fixed<br>by HST3-M10 through ,,Anchor hole,, in the channel |



| Design loading capacity - 3D                                                      |                      | 1/2 |
|-----------------------------------------------------------------------------------|----------------------|-----|
| Method                                                                            |                      |     |
| Ved strength Capacity find<br>Cenign tool<br>1.5<br>Live tool<br>Action Residence |                      |     |
| Limiting components of capacity evaluated                                         | in following tables: |     |
| 1. Channel local pull through                                                     |                      |     |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ( $< -10^{\circ}$  C), no high ( $> +100^{\circ}$  C) temperatures

| Possible loading cases                     |                                         |  |
|--------------------------------------------|-----------------------------------------|--|
| HST3-M10<br>in rounded<br>,,anchor hole,,. | HST3-M10<br>in channel<br>(oblong) slot |  |
|                                            |                                         |  |

## Design loading capacity - 3D

#### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Channel local pull through



| +Fx,Rd [kN]      | -Fx,Rd [kN]      | +Fy,Rd [kN]      | -Fy,Rd [kN]      | +Fz,Rd [kN]      | -Fz,Rd [kN]      |
|------------------|------------------|------------------|------------------|------------------|------------------|
|                  |                  |                  |                  |                  | 4.60             |
| +Mx,Rd<br>[kNcm] | -Mx,Rd<br>[kNcm] | +My,Rd<br>[kNcm] | -My,Rd<br>[kNcm] | +Mz,Rd<br>[kNcm] | -Mz,Rd<br>[kNcm] |
|                  |                  |                  |                  |                  |                  |

Condition: valid for channel edge distance ≥ 100mm, min concrete quality C20/25, no edge influence, no other anchor distance influence, min concrete slab (base material) thickness 120mm

Installation Technical Manual - Technical Data - MQ system light & project



#### HST3-M10 Direct fixation to concrete Possible loading cases HST3-M10 HST3-M10 in rounded in channel "anchor hole". (oblong) slot Loading case: Standard Combinations covered by loading case BOM: Direct fixation of channel on concrete fixed Channel by HST3-M10 through (oblong) slot in the channel Channel MQ-21 2m 2148545 MQ-21 3m 2148544 MQ-21 6m 2148543 MQ-41-L 2m 2141966 MQ-41-L 3m 2141965 MQ-41-L 6m 2141964 Screw anchor HST3 M10x90 30/10 2105712

| Recommended loading capacity - simplified for most common applications                                                  |                                                                                                                                                                                                                                         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Method<br>Vield strength<br>Permissible stress<br>Characteristic toad<br>Self weight<br>Live loads<br>Action Resistance | y ± Fx, rec. ± Fy, rec. ± Fz, rec. [kN]   [kN] 2.89   These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas. |  |  |  |  |

| Design loading capacity - 3D                                      | 1/2                  |
|-------------------------------------------------------------------|----------------------|
| Method                                                            |                      |
| Ved shringh Design led<br>Cesign load<br>1.5<br>A-ton Persistance |                      |
| Limiting components of capacity evaluated                         | in following tables: |
| 1. Channel local pull through                                     |                      |



### Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$  C), no high (> +100 $^{\circ}$  C) temperatures

| Possible loadi                             | ng cases                                |  |
|--------------------------------------------|-----------------------------------------|--|
| HST3-M10<br>in rounded<br>,,anchor hole,,. | HST3-M10<br>in channel<br>(oblong) slot |  |
|                                            |                                         |  |

## Design loading capacity - 3D

### Summary of design loads\*

**NOTE:** all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

| 1. Channel local pull through |                          |                                                 |                                                  |                                                |                                            |                             |
|-------------------------------|--------------------------|-------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------|
|                               | +Fx,Rd [kN]              | -Fx,Rd [kN]                                     | +Fy,Rd [kN]                                      | -Fy,Rd [kN]                                    | +Fz,Rd [kN]                                | -Fz,Rd [kN]                 |
|                               |                          |                                                 |                                                  |                                                |                                            | 4.05                        |
|                               | +Mx,Rd<br>[kNcm]         | -Mx,Rd<br>[kNcm]                                | +My,Rd<br>[kNcm]                                 | -My,Rd<br>[kNcm]                               | +Mz,Rd<br>[kNcm]                           | -Mz,Rd<br>[kNcm]            |
|                               | Condition: va<br>Ca<br>m | alid for chann<br>20/25, no ed<br>in concrete s | iel edge dista<br>ge influence,<br>ilab (base ma | ance ≥ 100m<br>no other and<br>aterial) thickn | m, min concr<br>chor distance<br>ess 120mm | ete quality<br>e influence, |

Installation Technical Manual - Technical Data - MQ system light & project



Installation Technical Manual - Technical Data - MQ system light & project

Boundary conditions - Terms of common cooperation / Legal disclaimer and guidelines as defined at the beginning of this book need to be mandatorily respected. 89