

Terms of common cooperation / Legal disclaimer

The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User's specific jurisdiction and project requirements.

Product	Designation	Item number	Page
MI Syst	em girders (chanr	nels) - section prop	perties
m 10 m	MI-90 3m MI-90 6m	304798 304799	6 6
20 20 20 20 20 20 20 20 20 20 20 20 20 2	MI-120 3m MI-120 6m	304800 304801	6 6
MI System con	nectors		
MI-90	MIC-90-U	304803	9
MI-120 3	MIC-120-U	304804	15
MI-90	MIC- 90-U-AP	305708	21
MI-120 220	MIC-120-U-AP	305709	27
140 75	MIC-90-L	304805	33
140 76	MIC-90-L-AP	305710	39
8 120	MIC-T	304807	45
30) 22 (1)	MIC-90-LH	2048107	51
100	MIC-90-E	304809	57
MALE	MIC-120-E	304810	61

Product	Designation	Item number	Page					
MI System connectors								
130	MIC-U-MA	304806	65					
MI System base material connectors - concrete								
VI 20	MIC-C90-AA	304825	71					
230 156 156 156 230	MIC-C90-D	304827	77					
220 140 155 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17	MIC-C120-D	304829	83					
100, 100 B B 100 C	MIC-C90-U	304826	89					
200 22614	MIC-CU-MA	304828	95					
MI System base	material connec	ctors - structural ste	el profiles					
M 90 V 300	MIC-S90-AA	304811	101					
MI-90 150 155 2 X	MIC-S90-A	304812	107					
MI-90 150 155 2 X	MIC-S90-B	304813	115					
MI-90 150 155 220	MIC-S90-C	304814	123					
MI-120 150 155 220	MIC-S120-A	304818	131					

Product	Designation	Item number	Page
MI System base	e material connecto	ors - structural st	eel profiles
MI-120 150 155 2 150 150 150 150 150 150 150 150 150 150	MIC-S120-B	304819	139
MI-120 155 2 514 60x13	MIC-S120-C	304820	147
12 B \$12.5 \$14) \$12.5 \$140	MIC-SA-MA	304815	155
012.5 012.5 0100 60x13	MIC-SB-MA	304816	163
12 B 912.5 V 914) 912.5 100 60x13	MIC-SC-MA	304817	171
131	MI-DGC 90	233860	179
	MI-DGC 120	233861	183
MI System brad	ckets - concrete		
230 158 15 47x17	MIC-C90-D- 500 MIC-C90-D- 750 MIC-C90-D-1000 MIC-C90-D-1500 MIC-C90-D-2000	267789 267790 267791 267792 267793	187
230 166 15 156 2747	MIC-C120-D- 500 MIC-C120-D- 750 MIC-C120-D-1000 MIC-C120-D-1500 MIC-C120-D-2000	270469 270470 270471	191
MI System brac	ckets - structural st	eel profiles	
B X 12 0 155 22 314 60x13	MIC-S90-A- 500 MIC-S90-A- 750 MIC-S90-A-1000 MIC-S90-A-1500 MIC-S90-A-2000	267774 267775 267776 267777 267778	195
12 12 155 22	MIC-S90-B- 500 MIC-S90-B- 750 MIC-S90-B-1000 MIC-S90-B-1500 MIC-S90-B-2000	267779 267780 267781 267782 267783	201

Product	Designation	Item number	Page
MI System brad	ckets - structural st	eel profiles	
B 12 0 155 22 21 155 22	MIC-S90-C- 500 MIC-S90-C- 750 MIC-S90-C-1000 MIC-S90-C-1500 MIC-S90-C-2000	267784 267785 267786 267787 267788	207
B B 12 12 150 150 150	MIC-S120-A- 500 MIC-S120-A- 750 MIC-S120-A-1000 MIC-S120-A-1500 MIC-S120-A-2000	267795 267796 267797	213
B 12 112 1150 150 150	MIC-S120-B- 500 MIC-S120-B- 750 MIC-S120-B-1000 MIC-S120-B-1500 MIC-S120-B-2000	270459 270460 270461	219
B B 12 1150 150 150 150	MIC-S120-C- 500 MIC-S120-C- 750 MIC-S120-C-1000 MIC-S120-C-1500 MIC-S120-C-2000	270464 270465 270466	225

MI-Girders

Section modulus

Radius of gyration

Data to the torsion

torsional moment of inertia

torsional section modulus

Designation	Item number
MI-90 3m	304798
MI-90 6m	304799
MI-120 3m	304800
MI-120 6m	304801

Page 1/1

	304800		Live loads
	304801	_	Action Resistance
		MI-90	MI-120
		Y	Y
А	[mm²]	1057.4	1456.24
	[kg/m]	9.43	12.64
$f_{y,k}$	[N/mm ²]	235,0	235,0
$\sigma_{\sf rec}$	[N/mm ²]	167.9	167.9
	[N/mm ²]	210000	210000
	[N/mm ²]	81000	81000
	[µm]	75	75
e _y	[mm]	45,0	60,0
l _y	[cm ⁴]	120.75	280.72
W_y	[cm ³]	26.83	46.79
i _y	[cm]	3.38	4.39
e _z	[mm]	45,00	45,00
l _z	[cm ⁴]	120.75	181.65
	f _{y,k} σ_{rec} e_y l_y W_y i_y e_z	A [mm²] [kg/m] f _{y,k} [N/mm²] O _{rec} [N/mm²] [N/mm²] [N/mm²] [μm] e _y [mm] l _y [cm⁴] W _y [cm³] i _y [cm]	MI-90 MI-

Material composition: DD11 MOD - HN 555, S235JR - EN 10025 Corrosion protection: Hot-dip galvanized, 75 μm - ASTM A123

 W_z

It W_t 26.83

3.38

164.82

38.82

40.37

3.53

314.97

71.69

[cm³]

[cm]

[cm⁴]

[cm³]

Page 1/5

Data version 1.3 I Date 12.2016

MIC-90-U Connector

Designation Item number MIC-90-U 304803

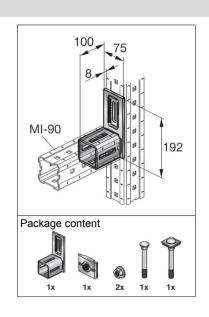
Corrosion protection:

Hot dipped galvanized:

Connector 55 µm - DIN EN ISO 1461

Backing plate, Tooth plate, Bolt, Nut 45 µm - DIN EN ISO 1461

Weight:


2510 g incl. components

Submittal text:

Material properties:

Steel grade 8.8

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads, and the connector is fixed with an oblong hole to enable fine adjustment. Not for cantilever applications.

Material Yield strength Ultimate strength Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025; $f_y = 235 \frac{N}{mm^2}$

Backing plate, Tooth plate: EN-GJMW-400-5 - DIN EN 1562, EN-GJMW-450-7 - DIN EN 1562

 $f_y = 235 \frac{N}{mm^2}$ $f_y = 640 \frac{N}{mm^2}$ $f_u = 360 \frac{N}{mm^2}$

 $f_u = 360 \frac{N}{mm^2}$

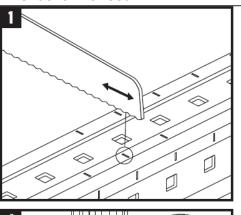
 $f_u = 800 \frac{N}{mm^2}$

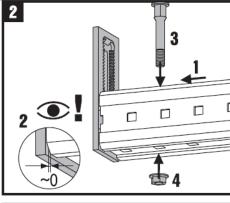
 $E = 210000 \frac{N}{mm^2}$

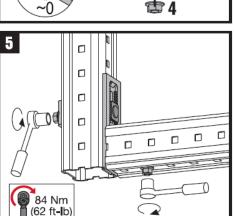
 $E = 210000 \frac{N}{mm^2}$

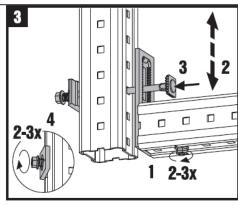
E-modulus

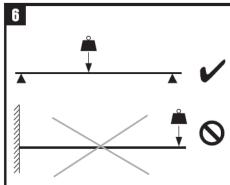
G = 80769 $\frac{N}{mm^2}$


Shear modulus


 $E = 210000 \frac{N}{mm^2}$


G = 80769 $\frac{N}{mm^2}$


G = 80769 $\frac{N}{mm^2}$


Instruction For Use:

Installation Technical Manual - Technical Data - MI system

Page 2/5

Data version 1.3 I Date 12.2016

MIC-90-U Connector

Possible loading cases				
Standard				

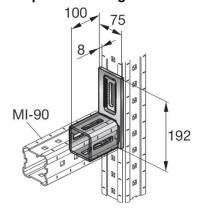
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

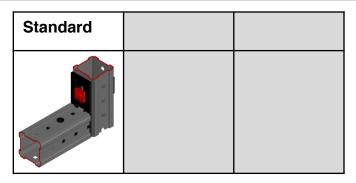

Software:

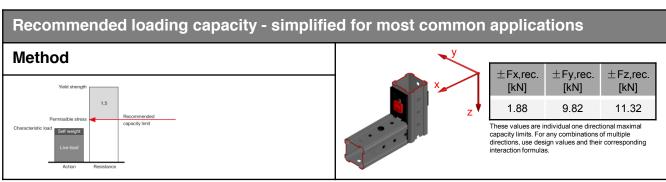
- Mathcad 15.0
- Microsoft Excel

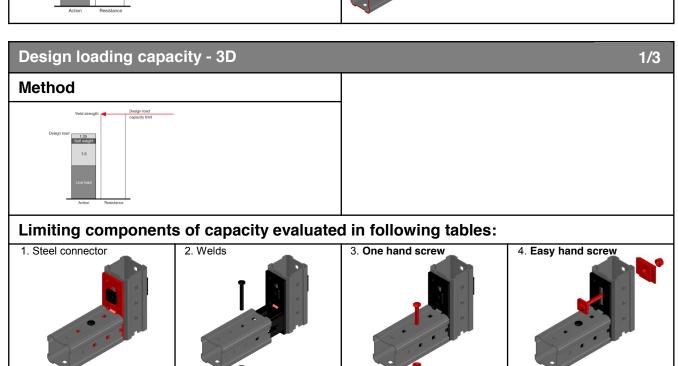
Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

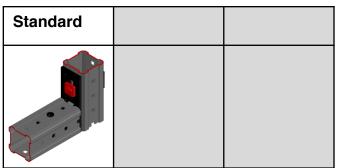

Page 3/5


Data version 1.3 I Date 12.2016


MIC-90-U Connector

The MIA-EH90 remain unused

Loading case: Standard Combinations covered by loading case BOM: Connector used for connecting For fixation on MI-90 girder MI-90 girder on either Angle incl. all components MI-90 or MI-120 girder 1x MIC-90-U 304803 in a 90-degree angle For fixation on MI-120 1x MIC-90-U 304803 1x MIA-EH120 304888

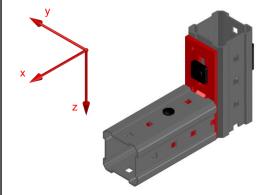


MIC-90-U Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

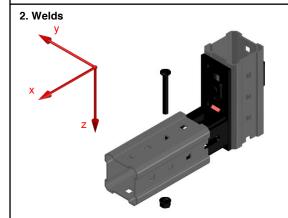
Design loading capacity - 3D


2/3

Page 4/5

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

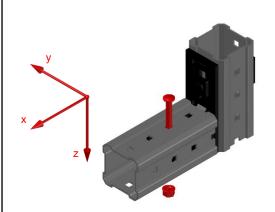
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.90	Not decisive	14.73	14.73	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.36	1.36	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	0.00	0.00	0.00	0.00

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

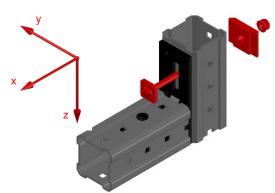

MIC-90-U Connector

Design loading capacity - 3D

3/3

Page 5/5

3. One hand screw -in connection to MIC-90-U and MI90-channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.33	3.33	36.29	36.29	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90 Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.82	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Note decisive	Not decisive	0.00	0.00	0.00	0.00

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le$$

Page 1/5

Data version 1.3 I Date 12.2016

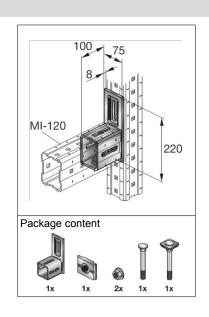
MIC-120-U Connector

Designation Item number MIC-120-U 304804

Corrosion protection:

Hot dipped galvanized:

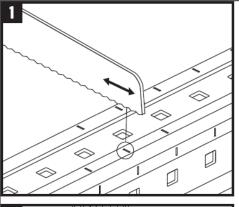
Connector 55 µm - DIN EN ISO 1461

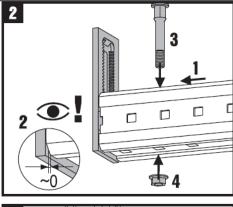

Backing plate, Tooth plate, Bolt, Nut 45 µm - DIN EN ISO 1461

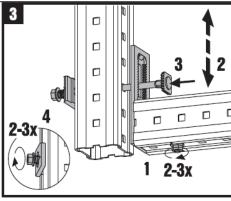
Weight:

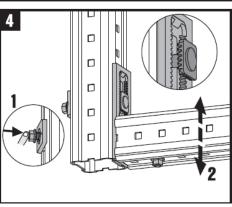
2786 g incl. components

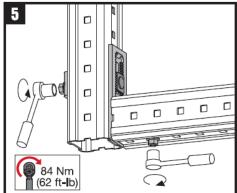
Submittal text:

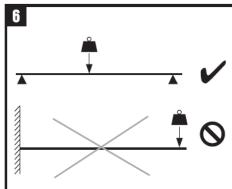

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads, and the connector is fixed with an oblong hole to enable fine adjustment. Not for cantilever applications.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Backing plate, Tooth plate: EN-GJMW-400-5 - DIN EN 1562, EN-GJMW-450-7 - DIN EN 1562	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-120-U Connector

Possible loading cases			
Standard			

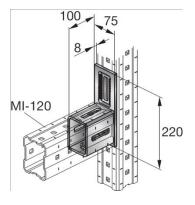
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

MIC-120-U Connector

Loading case: Standard

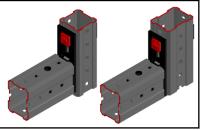
BOM:

For fixation on MI-90 girder Angle incl. all components

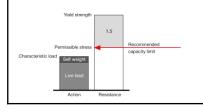
1x MIC-120-U

For fixation on MI-120

1x MIC-120-U


1x MIA-EH120

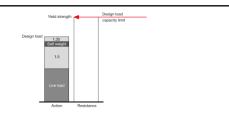
The MIA-EH90 remain unused


Combinations covered by loading case

Connector used for Connecting MI-120 girder on either MI-90 or MI-120 girder in a 90-degree angle

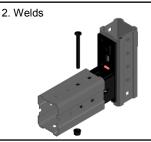
Recommended loading capacity - simplified for most common applications

Method

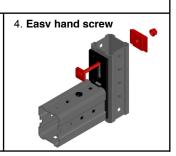

±Fx,rec	±Fy,rec	±Fz,rec
[kN]	[kN]	[kN]
1.72	10.55	11.32

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

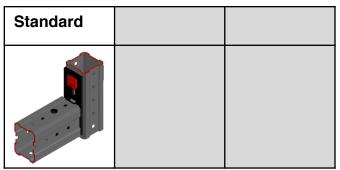
Design loading capacity - 3D


1/3

Method



Limiting components of capacity evaluated in following tables:

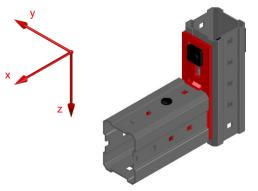


Installation Technical Manual - Technical Data - MI system

MIC-120-U Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

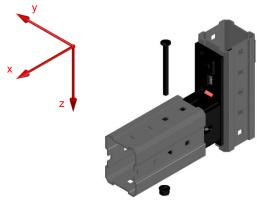

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.60	Not decisive	15.83	15.83	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.14	1.14	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure

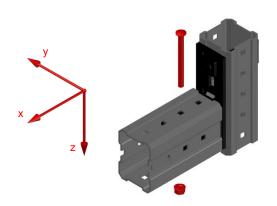
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

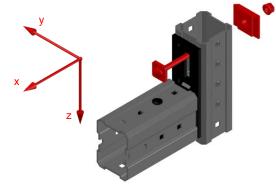

MIC-120-U Connector

Design loading capacity - 3D

3/3

Page 5/5

3. One hand screw -in connection to MIC-90-U and MI90-channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
6.66	6.66	41.47	41.47	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI120 Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.59	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Note decisive	Not decisive	0.00	0.00	0.00	0.00

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$

Page 1/5

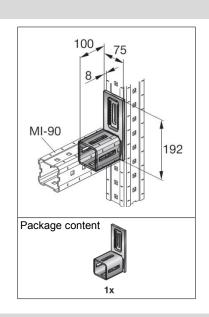
Data version 1.3 I Date 12.2016

MIC-90-U-AP Connector

Designation Item number MIC-90-U-AP 305708

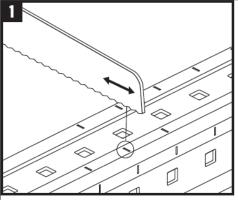
Corrosion protection:

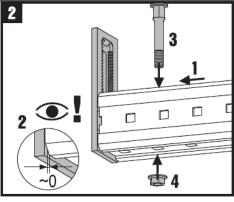
Hot dipped galvanized:

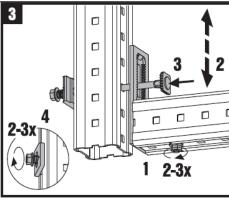

Connector 55 µm - DIN EN ISO 1461

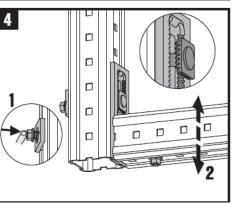
Weight:

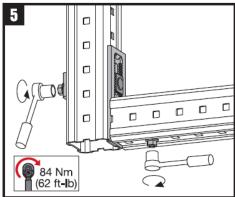
1780 g

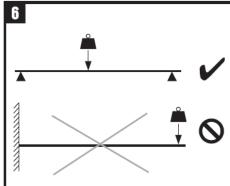

Submittal text:


Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads, and the connector is fixed with an oblong hole to enable fine adjustment. Not for cantilever applications.




Materiai properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:				
DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_{v} = 235 \frac{N}{mm^{2}}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$


Instruction For Use:



Page 1/5

Data version 1.3 I Date 12.2016

MIC-90-U-AP Connector

Possible loading cases		
Standard		

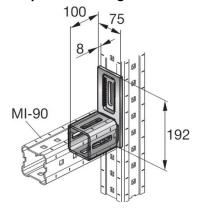
Design criteria used for loading capacity

Methodology:

Analytic calculation

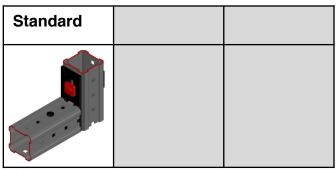
Standards and codes:

03.2003	 EN 1990 	•
	 EN 1991-1-1 	•
03.2012		
	 EN 1993-1-1 	•
03.2012		
3-	• EN 1993-1-3	•
09.2010		
	• EN 1993-1-5	•
06.2012		
	• EN 1993-1-8	•
03.2012		
09.20 06.20	• EN 1993-1-5	•

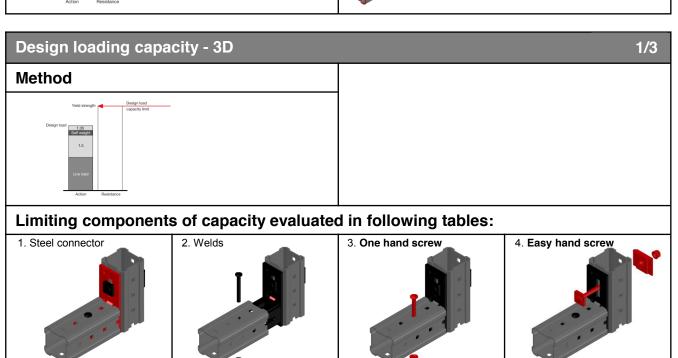

Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

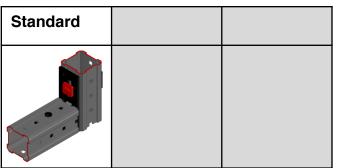
Simplified drawing:


Page 1/5

MIC-90-U-AP Connector

Loading case: Standard Combinations covered by loading case BOM: Connector used for connecting 1x MIC-90-U-AP 305708 MI-90 girder on either Components not included MI-90 or MI-120 girder 1x MIA-EH-P 304891 in a 90-degree angle 1x M12-F-SL WS3/4 382897 1x MIA-OH90 304889 For fixation on MI-90 girder 304887 1x MIA-EH90 For fixation on MI-120 1x MIA-EH120 304888

Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 11.32 1.88 9.82 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

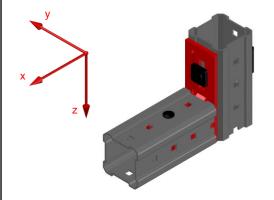


Page 1/5

MIC-90-U-AP Connector

Conditions of the loading capacity tables:

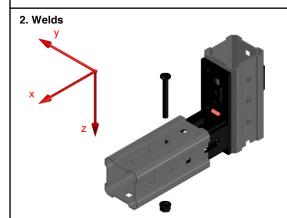
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

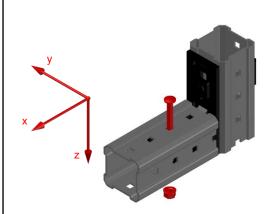
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.90	Not decisive	14.73	14.73	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.36	1.36	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	0.00	0.00	0.00	0.00

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

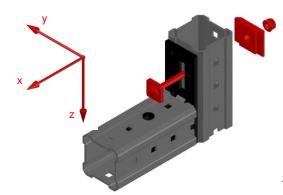

MIC-90-U-AP Connector

Design loading capacity - 3D

3/3

Page 5/5

3. One hand screw -in connection to MIC-90-U and MI90-channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.33	3.33	36.29	36.29	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI90 Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.82	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Note decisive	Not decisive	0.00	0.00	0.00	0.00

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$

Page 1/5

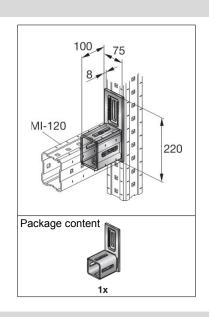
Data version 1.3 I Date 12.2016

MIC-120-U-AP Connector

Designation Item number MIC-120-U-AP 305709

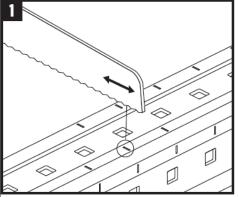
Corrosion protection:

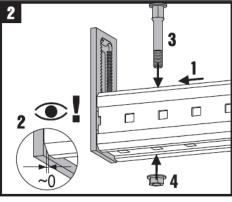
Hot dipped galvanized:

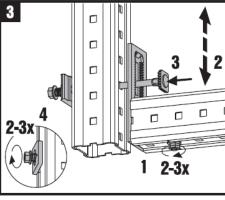

Connector 55 µm - DIN EN ISO 1461

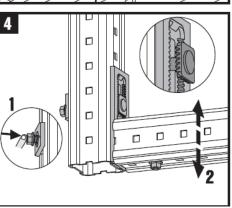
Weight:

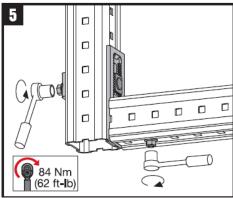
2180 g


Submittal text:


Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads, and the connector is fixed with an oblong hole to enable fine adjustment. Not for cantilever applications.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:				
DD11 MOD - HN 547,	a.r	N/	A.r	NT
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

MIC-120-U-AP Connector

Possible loading cases				
Standard				

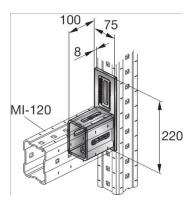
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012
•	EN 1993-1-8		03.201

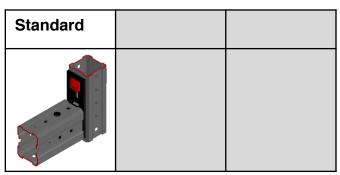

Software:

- Mathcad 15.0
- Microsoft Excel

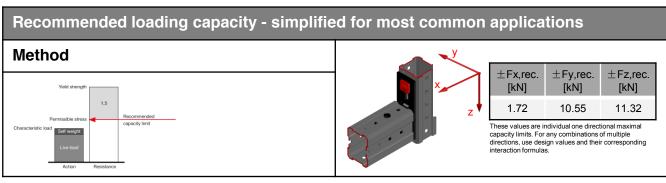
Environmental conditions:

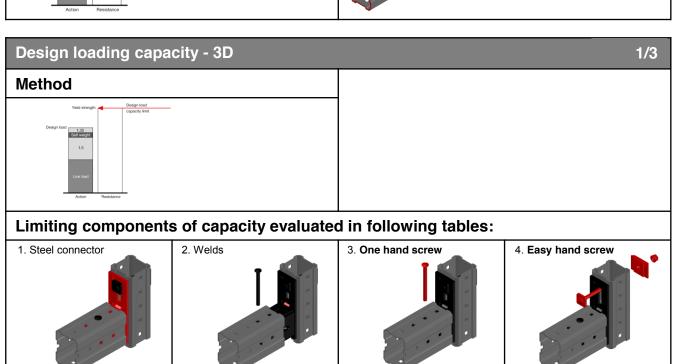
- · indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:



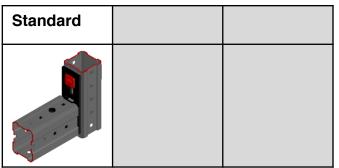
Page 3/5




Data version 1.3 I Date 12.2016

MIC-120-U-AP Connector

Loading case: Standard Combinations covered by loading case BOM: Connector used for 1x MIC-120-U-AP 305709 Connecting MI-120 Components not included girder on either 1x MIA-EH-P 304891 MI-90 or MI-120 1x M12-F-SL WS3/4 382897 1x MIA-OH120 304890 girder in a 90-degree For fixation on MI-90 girder angle 1x MIA-EH90 304887 For fixation on MI-120 1x MIA-EH120 304888

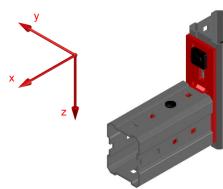


Page 4/5

MIC-120-U-AP Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

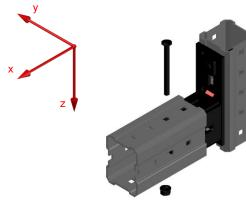

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.60	Not decisive	15.83	15.83	63.92	63.92
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.14	1.14	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure

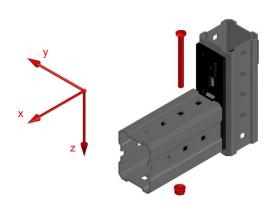
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.73	9.73	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$$

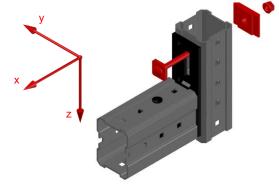

Page 5/5

MIC-120-U-AP Connector

Design loading capacity - 3D

3/3

3. One hand screw -in connection to MIC-90-U and MI90-channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
6.66	6.66	41.47	41.47	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.99	1.99	0.00	0.00	0.00	0.00

includes shear of the bolt, friction resistance, bearing resistance at connector plate and at channel MI120

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$$

4. Easy hand screw- in connection MIC-90-U to MI90/120-channel

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
2.59	Not decisive	Not decisive	Not decisive	16.99	16.99
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Note decisive	Not decisive	0.00	0.00	0.00	0.00

includes shear, bending and tension of the bolt, bearing resistance channel MI-90/120 and tooth plate, resistance of screw plate

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \leq 1$$

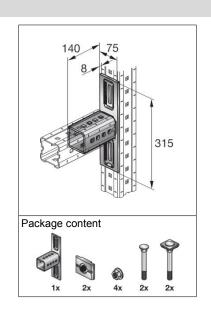
Page 1/5

Data version 1.3 I Date 12.2016

MIC-90-L Connector

Designation	Item number
MIC-90-L	304805

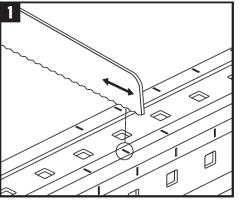
Corrosion protection:

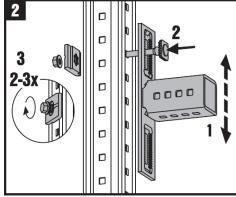

Connector 55 µm - DIN EN ISO 1461 Backing plate, Tooth plate, Bolt, Nut 45 µm - DIN EN ISO 1461

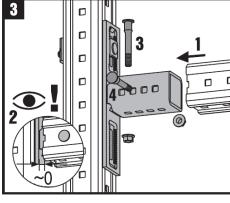
Weight:

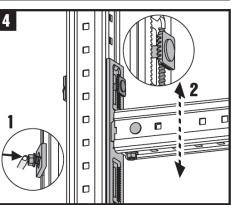
4050 g incl. components

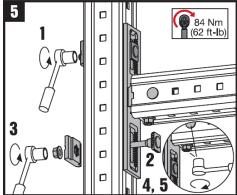
Submittal text:

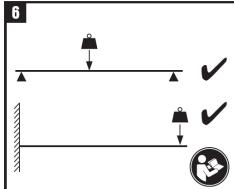

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Backing plate, Tooth plate: EN-GJMW-400-5 - DIN EN 1562, EN-GJMW-450-7 - DIN EN 1562	$f_y = 235 \frac{N}{mm^2}$	$f_{\rm u} = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-90-L Connector

Possible loadi	Possible loading cases		
Standard			

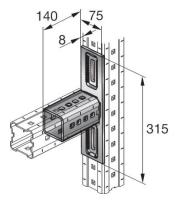
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

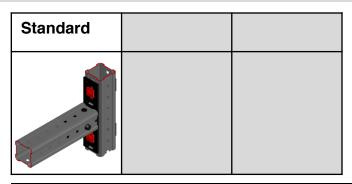
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/5

Data version 1.3 I Date 12.2016

MIC-90-L Connector

Loading case: Standard BOM:

For fixation on MI-90 girder Angle incl. all components

1x MIC-90-L

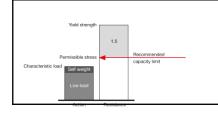
For fixation on MI-120

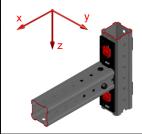
1x MIC-90-L

2x MIA-EH120

The MIA-EH90 remain unused

Combinations covered by loading case

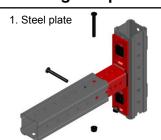

Connector used for Connecting MI-90 girder on either MI-90 or MI-120 girder in a 90-degree angle

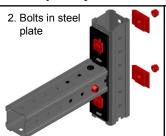


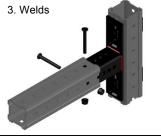
Recommended loading capacity - simplified for most common applications

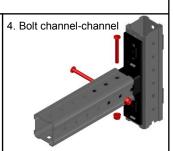
Method

±Fx,rec. [kN]	±Fy,rec.[kN]	±Fz,rec. [kN]
6.08	10.86	22.66

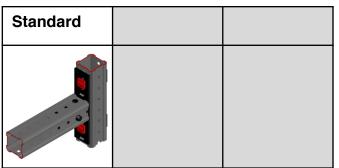

capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3


Method

Limiting components of capacity evaluated in following tables:

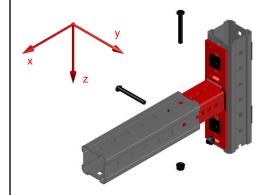


Page 4/5

MIC-90-L Connector

Conditions of the loading capacity tables:

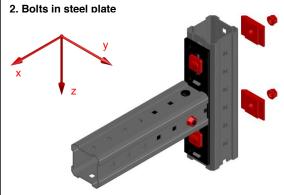
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel plate

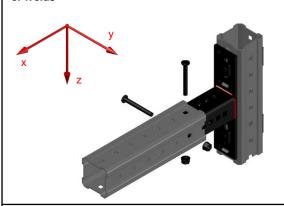
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
9.13	Not decisive	16.29	16.29	65.13	65.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.31	2.31	1.02	1.02	0.29	0.29

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
24.18	Not decisive	Not decisive	Not decisive	33.99	33.99
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Not decisive	Not decisive	1.26	1.26	0.85	0.85

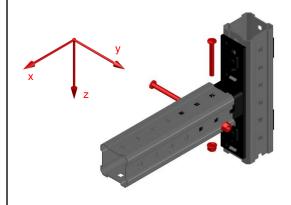
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


MIC-90-L Connector

Design loading capacity - 3D

3/3

Page 5/5



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

Interaction:

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. Bolt channel-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

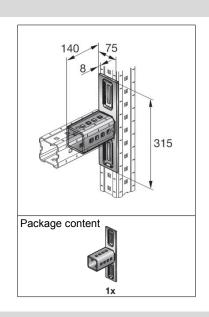
Page 1/5

Data version 1.3 I Date 12.2016

MIC-90-L-AP Connector

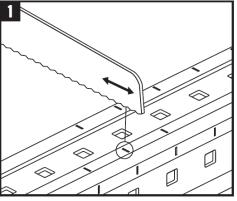
Designation Item number MIC-90-L-AP 305710

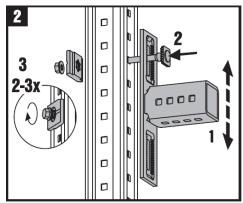
Corrosion protection:

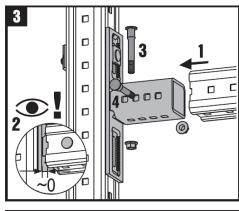

Connector 55 µm - DIN EN ISO 1461

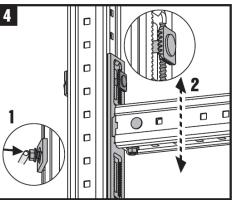
Weight:

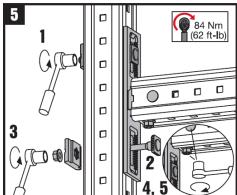
3002 g

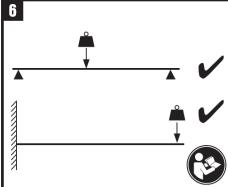

Submittal text:


Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI girders. The baseplate has a serrated slot for improved shear loads and fine adjustment, and the connector is connected with fixed holes instead of an oblong hole. Suitable for cantilever applications.




wateriai properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547,				
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-90-L-AP Connector

Possible loadi	Possible loading cases		
Standard			

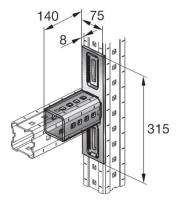
Design criteria used for loading capacity

Methodology:

Analytic calculation

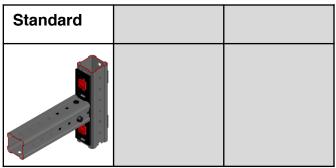
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	00 00 40
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

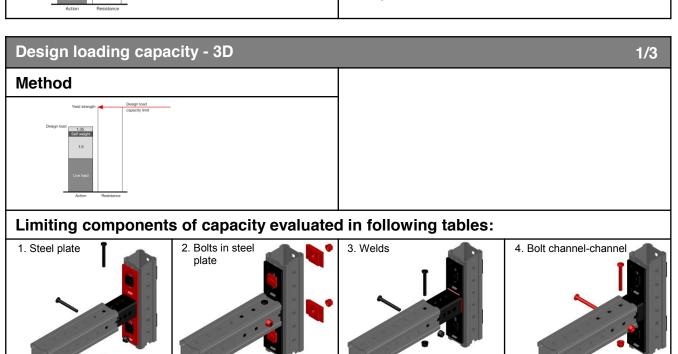

Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

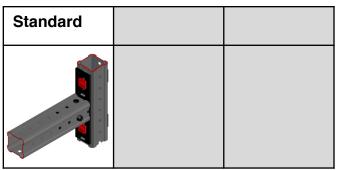

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:


Page 3/5

MIC-90-L-AP Connector

Loading case: Standard Combinations covered by loading case BOM: Connector used for 305710 1x MIC-90-L-AP Connecting MI-90 girder Components not included on either MI-90 or 2x MIA-EH-P 304891 MI-120 girder 2x M12-F-SL WS3/4 382897 2x MIA-OH90 304889 in a 90-degree For fixation on MI-90 girder angle 2x MIA-EH90 304887 For fixation on MI-120 2x MIA-EH120 304888

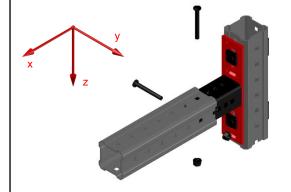

Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. ±Fz,rec.[[kN] [kN] kN] 6.08 10.86 22.66 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

MIC-90-L-AP Connector

Conditions of the loading capacity tables:

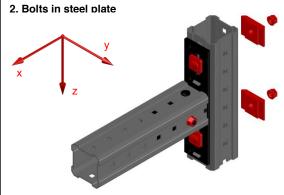
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D


2/3

Page 4/5

Summary of design loads*

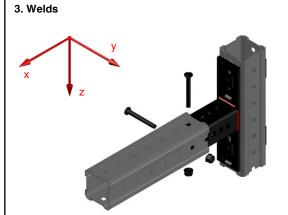

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel plate

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
9.13	Not decisive	16.29	16.29	65.13	65.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.31	2.31	1.02	1.02	0.29	0.29

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
24.18	Not decisive	Not decisive	Not decisive	33.99	33.99
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Not decisive	Not decisive	1.26	1.26	0.85	0.85

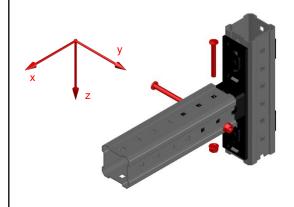

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

MIC-90-L-AP Connector

Design loading capacity - 3D

3/3

Page 5/5



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

Interaction:

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. Bolt channel-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/5

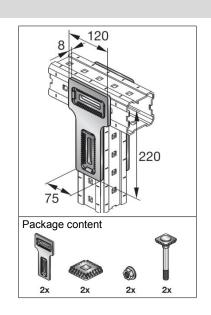
Data version 1.3 I Date 12.2016

MIC-T Connector

Designation	Item number
MIC-T	304807

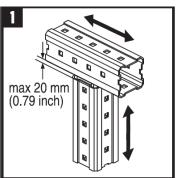
Corrosion protection:

Connector 55 µm - DIN EN ISO 1461 Backing plate, Tooth plate, Bolt, Nut 45 µm - DIN EN ISO 1461

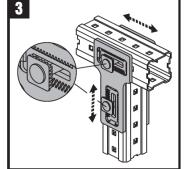

Weight:

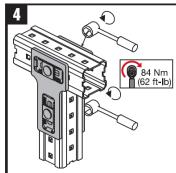
2200 g incl. components

Submittal text:


Material properties

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI or MIQ girders, where the horizontal girder sits on top of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is used on the side of the girders. Not suitable for cantilever applications.




material properties.				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Backing plate, Tooth plate: EN-GJMW-400-5 - DIN EN 1562, EN-GJMW-450-7 - DIN EN 1562	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_{y} = 640 \frac{N}{mm^{2}}$	$f_u = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

Page 2/5

Data version 1.3 I Date 12.2016

MIC-T Connector

Possible loading cases		
Standard		

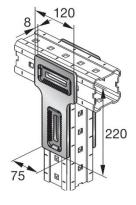
Design criteria used for loading capacity

Methodology:

Analytic calculation

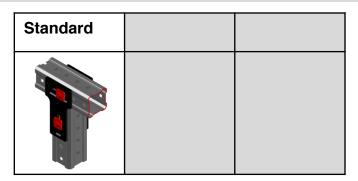
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

Page 3/5

MIC-T Connector

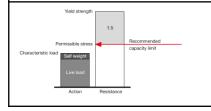
Loading case: Standard

BOM:

Angle incl. all components

1x MIC-T

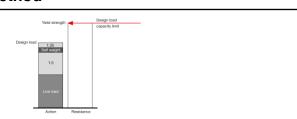
304807


Combinations covered by loading case

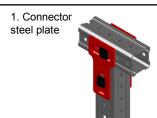
Connector used for perpendicular connections of two MI-90 girders, where Horizontal girder sits on top of the vertical girder

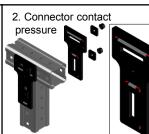
Recommended loading capacity - simplified for most common applications

Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
7.22	4.00	17.74

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

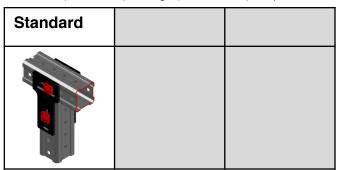

Design loading capacity - 3D


1/3

Method



Limiting components of capacity evaluated in following tables:

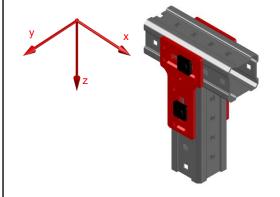


Page 4/5

MIC-T Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

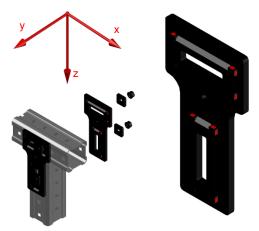

Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Connector steel plate



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
25.52	25.52	6.01	6.01	225.60	210.56
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.44	0.44	1.98	1.98	0.25	0.25

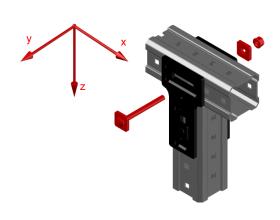
Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Connector contact pressure

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
10.83	10.83	Not decisive	Not decisive	40.32	40.32
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Not decisive	Not decisive	1.81	1.81	0.49	0.49

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

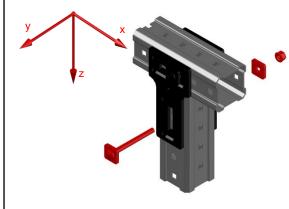

MIC-T Connector

Design loading capacity - 3D

3/3

Page 5/5

3. Easyhand screw top


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.62	26.62	15.41	15.41	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.60	1.60	Not decisive	Not decisive	Not decisive	Not decisive

includes shear, bending and tension of the bolt, bearing resistance channel MI90/MI120 and tooth plate

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

4. Easyhand screw bottom

	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
ı	Not decisive	Not decisive	48.56	48.56	26.62	26.62
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
I	1.70	1.70	Not decisive	Not decisive	Not decisive	Not decisive

$$\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

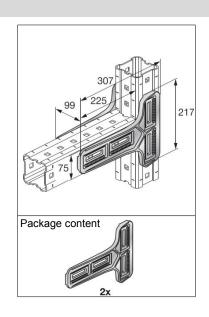
Page 1/5

Data version 1.3 I Date 12.2016

MIC-90-LH Connector

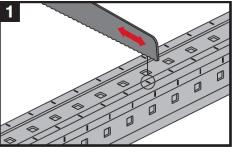
Designation Item number MIC-90-LH 2048107

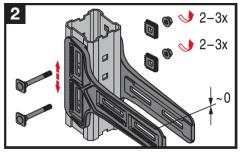
Corrosion protection:

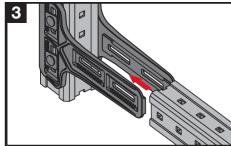

Connector 55 µm - DIN EN ISO 1461

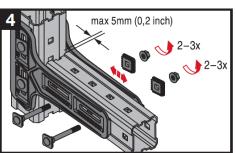
Weight:

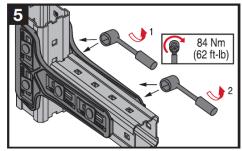
3800 g

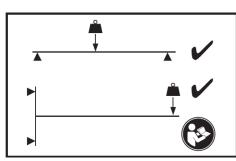

Submittal text:


Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI or MIQ girders, where the horizontal girder is connected to the side of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is used on the sides of the girders. Suitable for cantilever applications.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: C30-1.0528	$f_y = 250 \frac{N}{mm^2}$	$f_u = 480 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-90-LH Connector

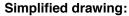
Possible loadii	ng cases	
Standard		

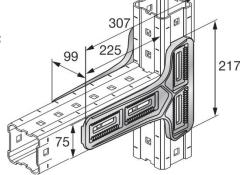
Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Finite element analysis
- Hardware tests

Standards and codes:


EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	09.2011
EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
	rules- Supplementary rules for cold-formed members and sheeting	03.2012
EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
	structural elements	03.2012
EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
	joints	03.2012
EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
	delivery conditions for non-alloy structural steels	02.2005
RAL-GZ 655	Pipe Supports	04.2008


Software:

- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Page 3/5

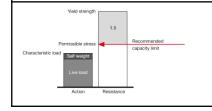
Data version 1.3 I Date 12.2016

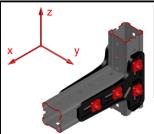
MIC-90-LH Connector

Loading case: Standard

BOM:

Angle does not include all components 1x MIC-90-LH connector Connectivity material ordered separately 4x MIA-EH90 easy hand screw 304887 4x MIA-TP serrated plate 305707 4x M12-F-SL-WS 3/4" lock nut 382897


Combinations covered by loading case

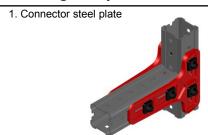

Connector used for perpendicular connections of two MI-90 girders, to enable a cantilever arm

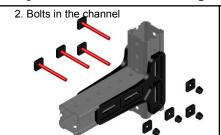
Recommended loading capacity - simplified for most common applications

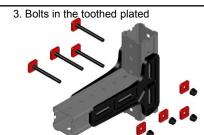
Method

\pm Fy,rec. [kN]	\pm Fz,rec. [kN]
9.7	35.5
±My,rec. [kNm]	
3.83	
	[kN] 9.7 ±My,rec. [kNm]

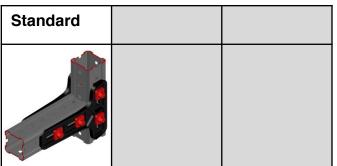
capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3


Method

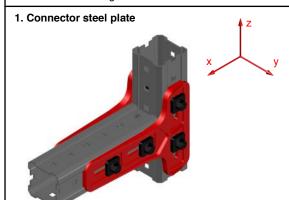
Limiting components of capacity evaluated in following tables:



MIC-90-LH Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

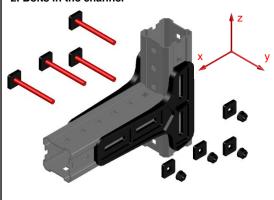

Design loading capacity - 3D

2/3

Page 4/5

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.0	112.0	14.50	14.50	72.00	72.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.75	1.75	5.75	5.75	1.73	1.73

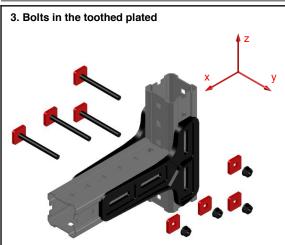
Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Bolts in the channel

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
53.24	53.24	Not decisive	Not decisive	53.24	53.24
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Not decisive					

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$



MIC-90-LH Connector

Design loading capacity - 3D

3/3

Page 5/5

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
113.0	113.0	Not decisive	Not decisive	113.0	113.0
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Not decisive	Not decisive	Not decisive	Not decisive	Not decisive	Not decisive

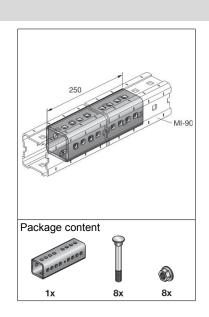
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$

Page 1/4

MIC-90-E Connector

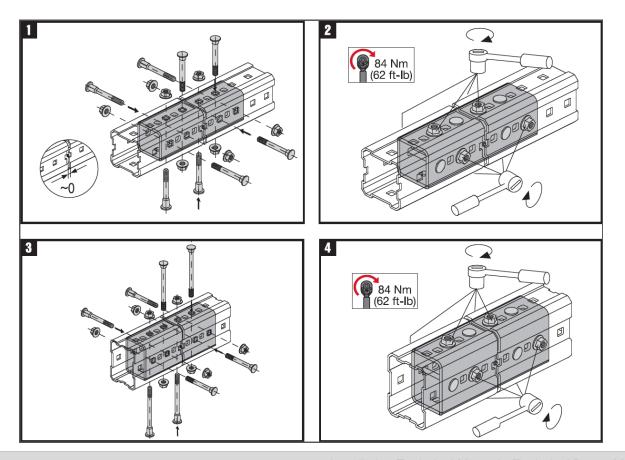
Designation MIC-90-E	ltem number

Corrosion protection:


Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

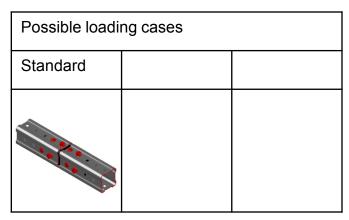
Weight:

3685 g incl. components


Submittal text:

Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-90 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$


Instruction For Use:

Page 2/4

Data version 1.3 I Date 12.2016

MIC-90-E Connector

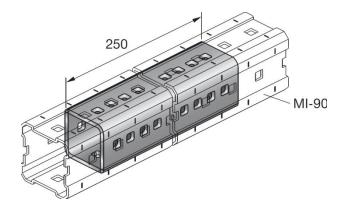
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

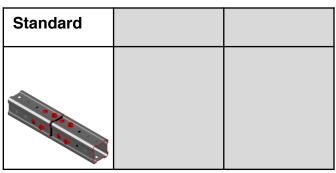
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

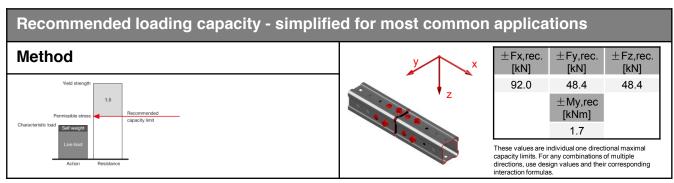

Software:

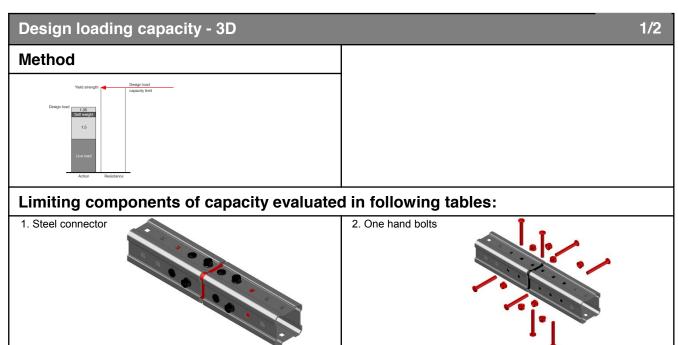
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

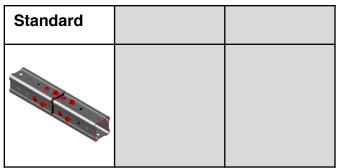

Simplified drawing:


Page 3/4


Data version 1.3 I Date 12.2016

MIC-90-E Connector

Loading case: Standard	Combinations covered by loading case		
BOM: Angle incl. all components 1x MIC-90-E 304809	Connector used for extension of MI-90 girders		

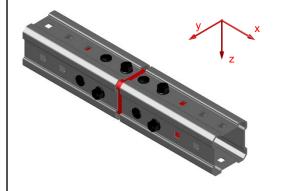


MIC-90-E Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

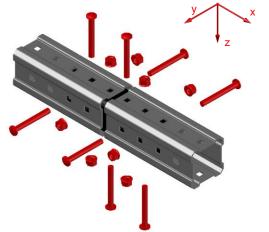

2/2

Page 4/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
304.40	304.40	89.68	89.68	89.68	89.68
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.56	5.56	6.26	6.26	6.26	6.26

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le$$

2. One hand bolts

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
138.05	138.05	72.58	72.58	72.58	72.58
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.52	5.52	2.62	2.62	2.62	2.62

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

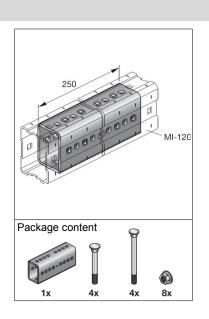
Page 1/4

MIC-120-E Connector

Designation	Item number
MIC-120-E	304810

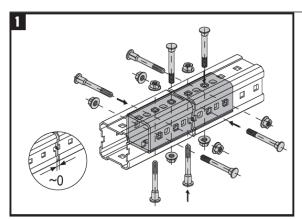
Corrosion protection:

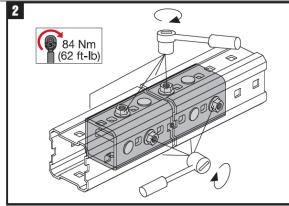
Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

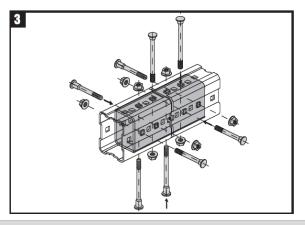

Weight:

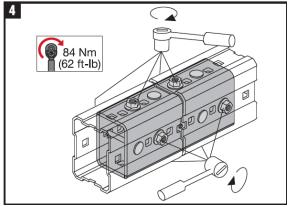
4490 g incl. components

Submittal text:

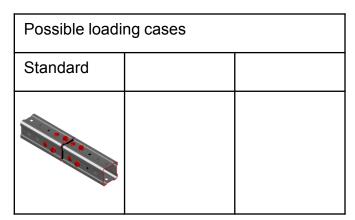

Material properties


Hot dipped galvanized, Hilti MI extension connector typically used for connecting two MI-120 girders together to form a continuous girder. Fixed with 8 bolts and lock-nuts through the girder to enable a strong hold and vibration resistance.




material properties.				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:



Page 2/4

Data version 1.3 I Date 12.2016

MIC-120-E Connector

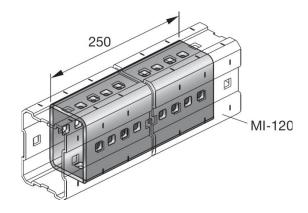
Design criteria used for loading capacity

Methodology:

Analytic calculation

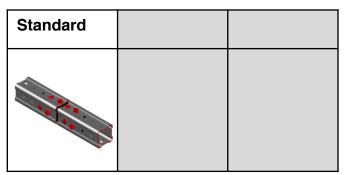
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

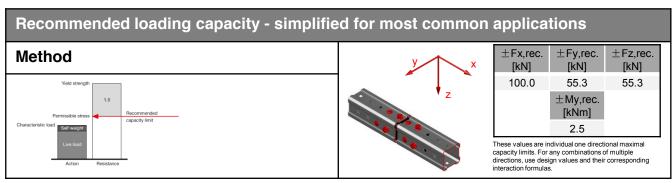

Software:

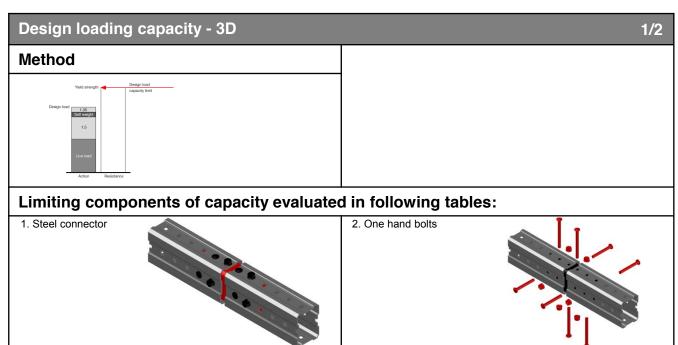
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

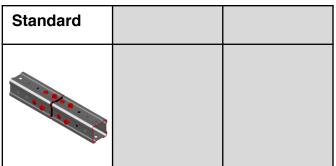
Simplified drawing:




Page 3/4

MIC-120-E Connector

Loading case: Standard	Combinations covered by loading case		
BOM: Angle incl. all components 1x MIC-120-E 304810	Connector used for extension of MI-120 girder		

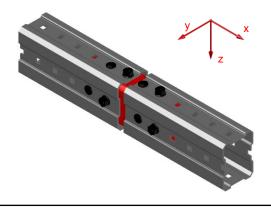


Page 4/4

MIC-120-E Connector

Conditions of the loading capacity tables:

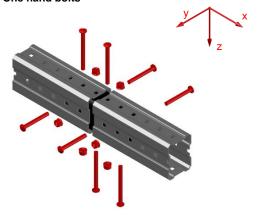
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
392.45	392.45	105.50	105.50	152.72	152.72
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.46	8.46	10.47	10.47	8.74	8.74

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
149.97	149.97	82.94	82.94	82.94	82.94
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
7.17	7.17	3.79	3.79	2.70	2.70

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

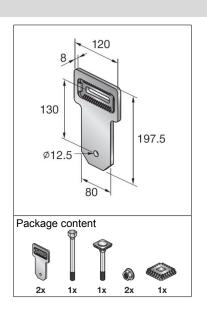
Page 1/5

Data version 1.3 I Date 12.2016

MIC-U-MA Connector

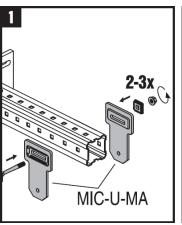
Designation Item number MIC-U-MA 304806

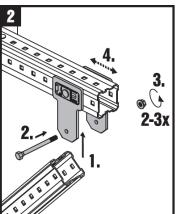
Corrosion protection:

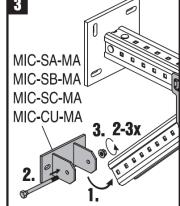

Connector 55 µm - DIN EN ISO 1461 Backing plate, Tooth plate, Bolt, Nut 45 µm - DIN EN ISO 1461

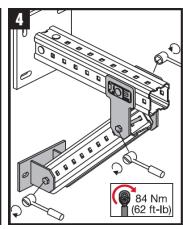
Weight:

2630 g incl. components


Submittal text:


Hot dipped galvanized Hilti MI connector, typically used for connecting two MI or MIQ girders, where one girder is braced / supported by the other in an angle, to improve total load capacity of the structure. One oblong hole enables fine adjustment and is serrated to improve holding. Connector is used on the sides of the girders.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Backing plate, Tooth plate: EN-GJMW-400-5 - DIN EN 1562, EN-GJMW-450-7 - DIN EN 1562	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

Page 2/5

Data version 1.3 I Date 12.2016

MIC-U-MA Connector

Possible loading cases			
Standard			

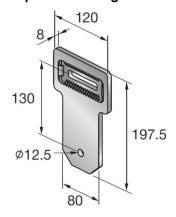
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

2012
2012
2012
2010
2012
2012
2


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

Page 3/5

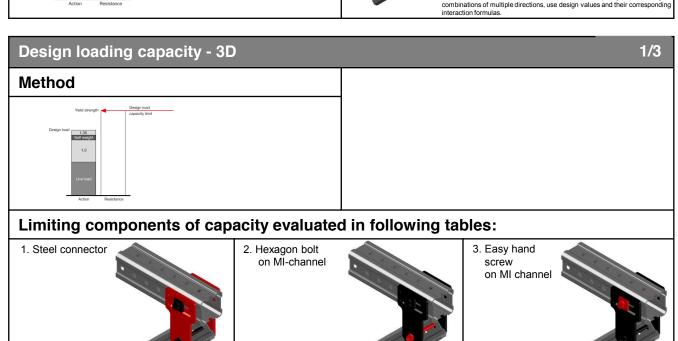
MIC-U-MA Connector

Loading case: Standard

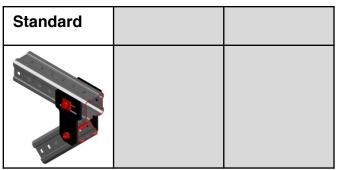
Combinations covered by loading case

BOM:

Angle incl. all components 1x MIC-U-MA


304806

Connector used for an angular connection of two MI-90 Or MIQ-90 girders (bracket brace)



MIC-U-MA Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

2/3

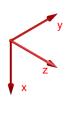
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.32	40.32	2.11	2.11	13.96	13.96
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.63	0.63	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction for a general force F_{\sim} with a certain inclination α :


$$F_{\alpha x E d} = F_{\alpha}^* cos \alpha$$
 and $F_{\alpha z E d} = F_{\alpha}^* sin \alpha$

$$\frac{F_{\alpha.x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{\alpha.z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The torsional moment Mx is referred to the local x-dire inclined profile.

2. Hexagon bolt on MI-channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.38	26.38	Not decisive	Not decisive	26.38	26.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.19	1.19	0.00	0.00	0.00	0.00

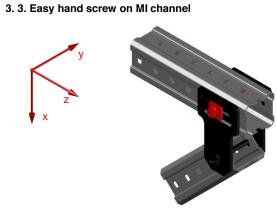
$$F_{\alpha Rd} = F_{xRd} = F_{zRd}$$

includes shear and bending of the bolt, bearing resistance connector plate

The resistance $F_{\alpha R d}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force $\boldsymbol{F}_{\alpha Ed}$ in the inclined strut has to be compared with the resistance value F_{αRd}.

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$



MIC-U-MA Connector

Design loading capacity - 3D

3/3

Page 5/5

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Not decisive	Not decisive	16.87	16.87	26.62	26.62
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

includes shear, tension and bending of the bolt, bearing resistance channel MI90 and tooth plate

$$\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

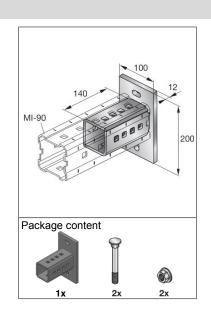
Page 1/5

Data version 1.3 I Date 12.2016

MIC-C90-AA Base Material Connector - Concrete

Designation Item number MIC-C90-AA 304825

Corrosion protection:

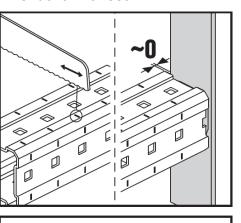

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

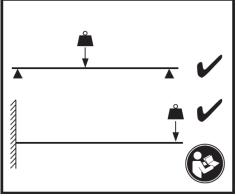
Weight:

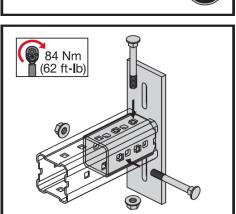
3490 g incl. components

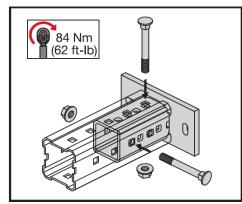
Submittal text:

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 ^N	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:


84 Nm


(62 ft-lb)

Page 2/5

MIC-C90-AA Base Material Connector - Concrete

Possible loading cases			
Standard			

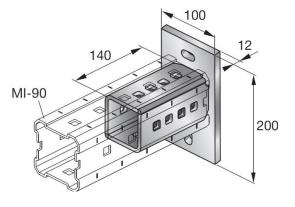
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

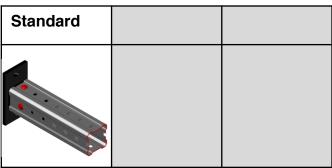
2012
2012
2012
2010
2012
2012
2

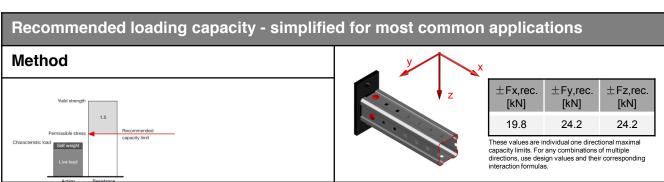

Software:

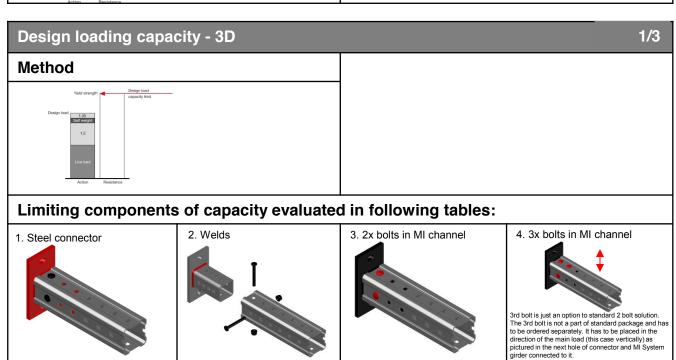
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

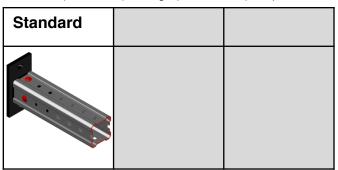

Simplified drawing:


Page 3/5


Data version 1.3 I Date 12.2016

MIC-C90-AA Base Material Connector - Concrete

Loading case: Standard Combinations covered by loading case BOM: Baseplate connector used for a perpendicular connection of Angle incl. all components an MI-90 girder to concrete 1x MIC-C90-AA 304825 Associated anchors* for cracked concrete 2x HST3 M12x115 40/20 2105719 HST2 M12x115/20 2107849 *Anchors not incl. in capacity limits

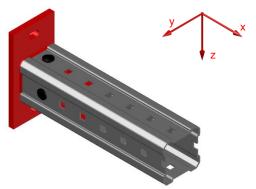


Page 4/5

MIC-C90-AA Base Material Connector - Concrete

Conditions of the loading capacity tables:

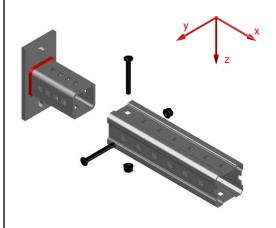
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

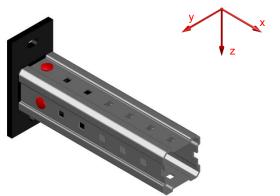
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
29.68	112.79	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.10	4.10	2.41	2.41	1.22	1.22

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	3.67	3.67	3.67	3.67

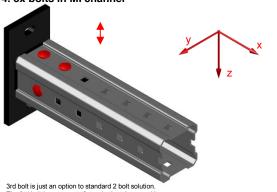
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Data version 1.3 I Date 12.2016 Page 5/5

MIC-C90-AA Base Material Connector - Concrete

Design loading capacity - 3D

3/3


3. 2x bolts in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.29	36.29	36.29	36.29
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. 3x bolts in MI channel

3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standard package and has to be ordered separately. It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

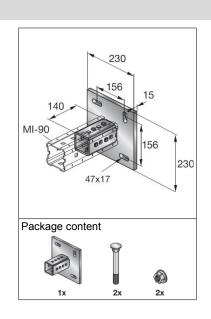
Page 1/5

Data version 1.3 I Date 12.2016

MIC-C90-D Base Material Connector - Concrete

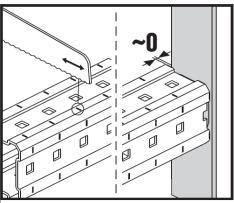
Designation	Item number
MIC-C90-D	304827

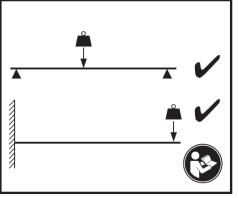
Corrosion protection:

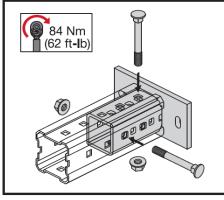

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

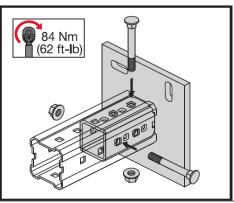
Weight:

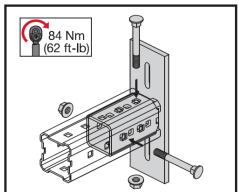
7840 g incl. components

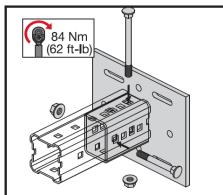

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.




materiai properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547,				
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-C90-D Base Material Connector - Concrete

Possible loading cases				
Standard				

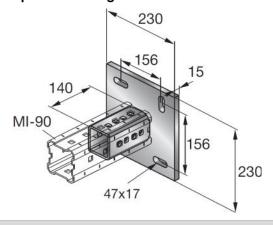
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

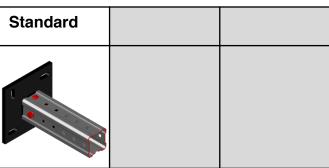
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/5

Data version 1.3 I Date 12.2016

MIC-C90-D Base Material Connector - Concrete

Loading case: Standard

Combinations covered by loading case

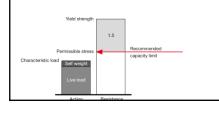
BOM:

Angle incl. all components 1x MIC-C90-D

304827

Associated anchors* for cracked concrete

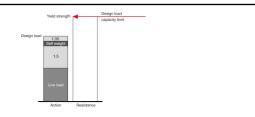
4x HST3 M16x135 35/15 2105858


*Anchors not incl. in capacity limits

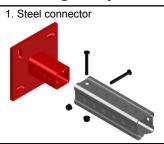

Baseplate connector used for a perpendicular connection of an MI-90 girder to concrete

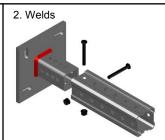
Recommended loading capacity - simplified for most common applications

Method

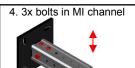

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
29.3	24.2	24.2

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

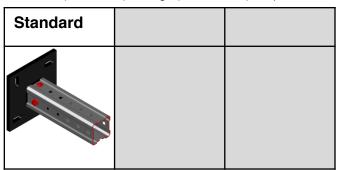

Design loading capacity - 3D


1/3

Method



Limiting components of capacity evaluated in following tables:


3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standard package and has to be ordered separately. It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

Page 4/5

MIC-C90-D Base Material Connector - Concrete

Conditions of the loading capacity tables:

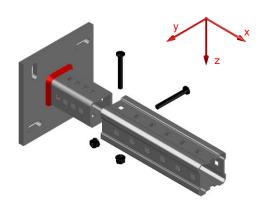
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

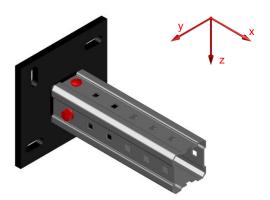
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
44.00	148.20	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	4.15	4.15	4.15	4.15

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

2. Welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	3.67	3.67	3.67	3.67

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

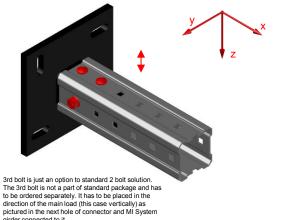

MIC-C90-D Base Material Connector - Concrete

Design loading capacity - 3D

3/3

Page 5/5

3. 2x bolts in MI channel



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. 3x bolts in MI channel

girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{X,Ed}}{F_{X,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Page 1/5

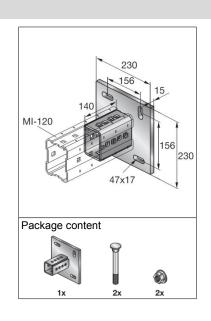
Data version 1.3 I Date 12.2016

MIC-C120-D Base Material Connector - Concrete

Designation Item number MIC-C120-D 304829

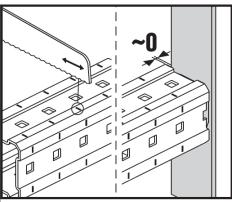
Corrosion protection:

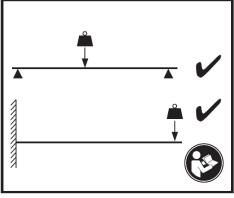
Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

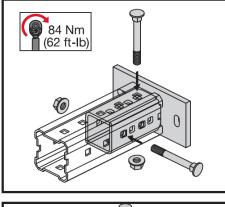

Weight:

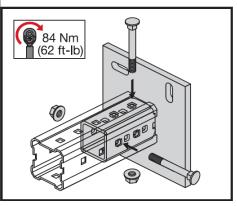
7960 g incl. components

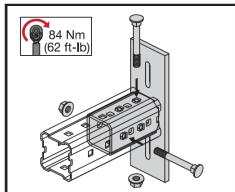
Submittal text:

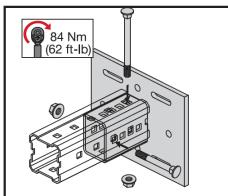

Motorial proportion


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.




material properties.				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547,				
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_{u} = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-C120-D Base Material Connector - Concrete

Possible loadi	ng cases	
Standard		

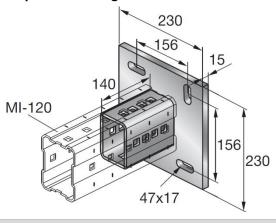
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

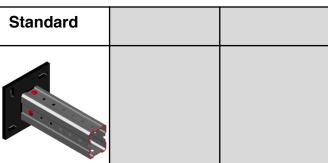
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	00.2012
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/5

Data version 1.3 I Date 12.2016

MIC-C120-D Base Material Connector - Concrete

Loading case: Standard

BOM:

Angle incl. all components

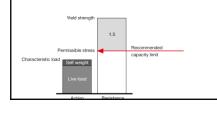
1x MIC-C120-D

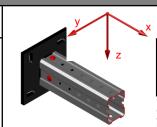
304829

Associated anchors* for cracked concrete

4x HST3 M16x135 35/15 2105858

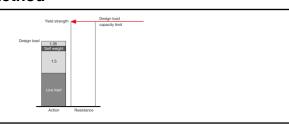
*Anchors not incl. in capacity limits



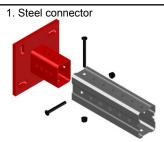

Baseplate connector used for a perpendicular connection of an MI-90 girder to concrete

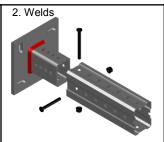
Recommended loading capacity - simplified for most common applications

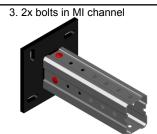
Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
31.6	27.6	27.6

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

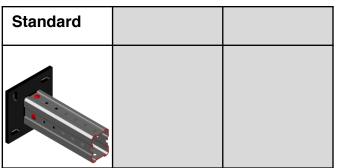

Design loading capacity - 3D


1/3


Method

Limiting components of capacity evaluated in following tables:

4. 3x bolts in MI channel



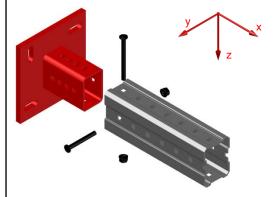
3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standard package and has to be ordered separately. It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

MIC-C120-D Base Material Connector - Concrete

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

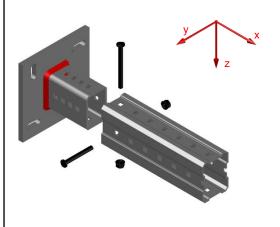
Design loading capacity - 3D


2/3

Page 4/5

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector

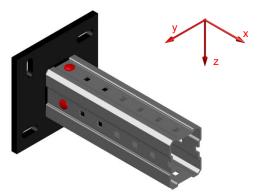
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
47.50	186.43	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	4.55	4.55	2.35	2.35

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.55	10.55	5.87	5.87	7.06	7.06

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

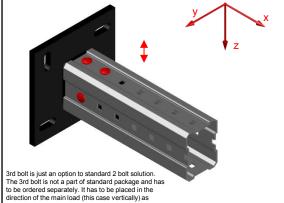

Page 5/5

MIC-C120-D Base Material Connector - Concrete

Design loading capacity - 3D

3/3

3. 2x bolts in MI channel


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. 3x bolts in MI channel

pictured in the next hole of connector and MI System girder connected to it.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.68	5.68	3.79	3.79	1.35	1.35

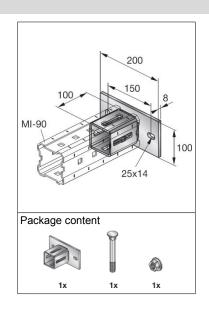
$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/5

MIC-C90-U Base Material Connector - Concrete

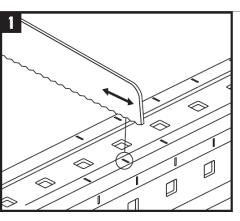
Designation	Item number
MIC-C90-U	304826

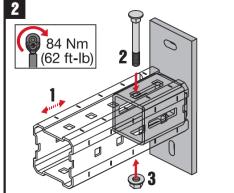
Corrosion protection:

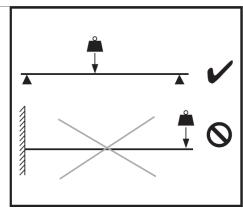

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

Weight:

2450 g incl. components

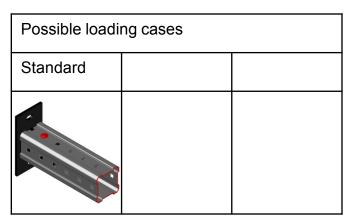

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using bolts through an oblong hole that enables fine tuning of girder position.



Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025:	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	E = 210000 - N	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:



Page 2/5

MIC-C90-U Base Material Connector - Concrete

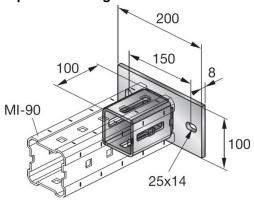
Design criteria used for loading capacity

Methodology:

Analytic calculation

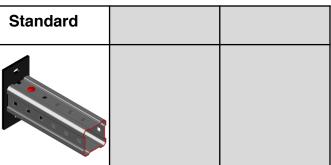
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	00.2012
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

Page 3/5

MIC-C90-U Base Material Connector - Concrete

Loading case: Standard

Combinations covered by loading case

BOM:

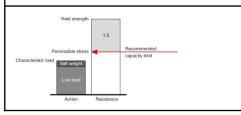
Angle incl. all components

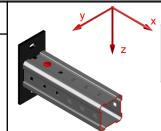
1x MIC-C90-U 304826

Associated anchors* for cracked concrete

2x HST3 M12x115 40/20 2105719 HST2 M12x115/20 2107849

*Anchors not incl. in capacity limits



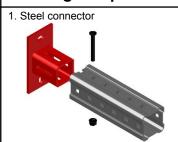

Baseplate connector used for a perpendicular connection of an MI-90 girder to concrete

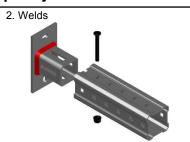
Recommended loading capacity - simplified for most common applications

Method

±Fx,rec.	±Fy,rec.	±Fz,rec.	
[kN]	[kN]	[kN]	
2.22	24.2	17.00	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3

Method

Limiting components of capacity evaluated in following tables:

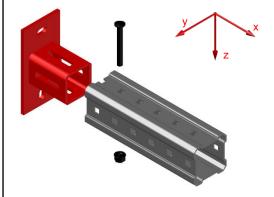
MIC-C90-U Base Material Connector - Concrete

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Standard	

Design loading capacity - 3D

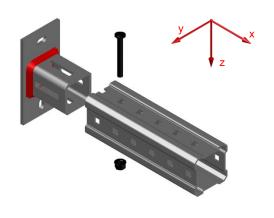

2/3

Page 4/5

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
13.19	93.32	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.10	4.10	0.00	0.00	0.00	0.00

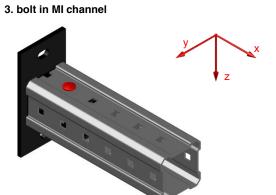
Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

2. Welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	0.00	0.00	0.00	0.00

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$



MIC-C90-U Base Material Connector - Concrete

Design loading capacity - 3D

3/3

Page 5/5

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
3.33	3.33	36.29	36.29	Not decisive	Not decisive
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.20	1.20	0.00	0.00	0.00	0.00

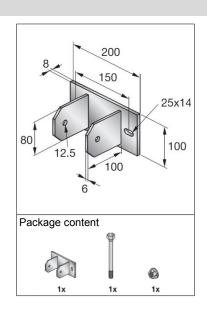
$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} \leq 1$$

Page 1/5

MIC-CU-MA Base Material Connector - Concrete

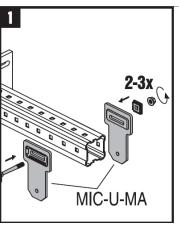
Designation Item number MIC-CU-MA 304828

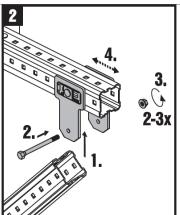
Corrosion protection:

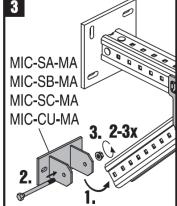

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

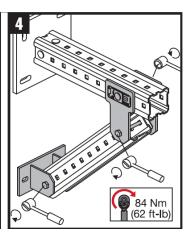
Weight:

2210 g incl. components


Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to concrete in an angle, usually when it's used as a brace for another girder. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

Page 2/5

Data version 1.3 I Date 12.2016

MIC-CU-MA Base Material Connector - Concrete

Possible loading cases			
Standard			

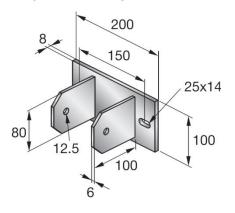
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

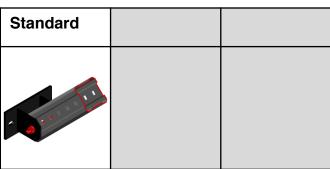
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

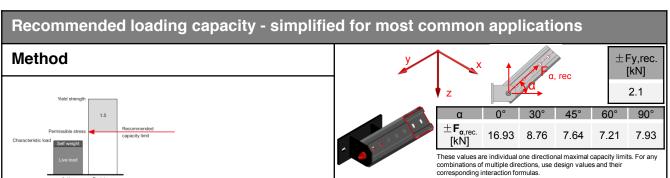

Software:

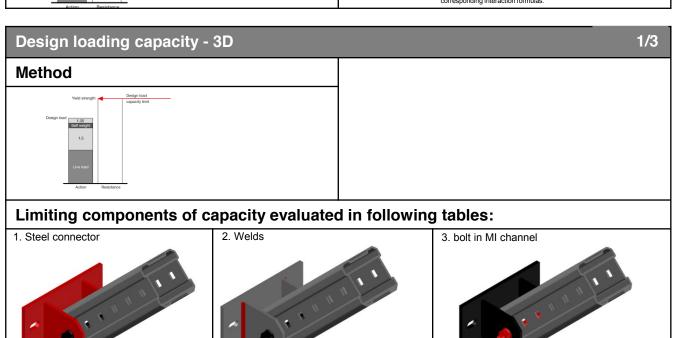
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

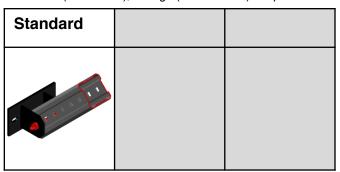

Simplified drawing:


Page 3/5


Data version 1.3 I Date 12.2016

MIC-CU-MA Base Material Connector - Concrete

Loading case: Standard	Combinations covered by loading case
Angle incl. all components 1x MIC-CU-MA Associated anchors* for cracked concrete 2x HST3 M12x105 30/10 HST2 M12x105/10 2107848 *Anchors not incl. in capacity limits	Baseplate connector used for an angled connection of an MI-90 girder to concrete (bracing)

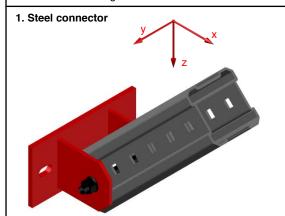


Page 4/5

MIC-CU-MA Base Material Connector - Concrete

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

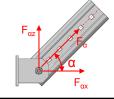


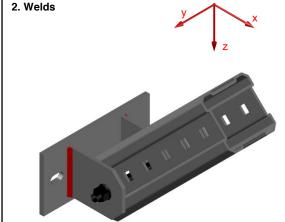
Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.




+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
25.39	104.01	3.22	3.22	11.90	11.90
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.58	0.58	0.00	0.00	0.00	0.00

Interaction:

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

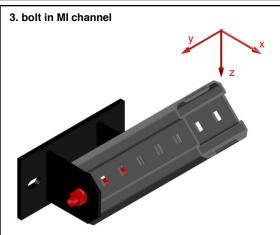
with $F_{x.Ed.\alpha} = F_{\alpha} * cos\alpha$ $F_{z.Ed.\alpha} = F_{\alpha} * sin\alpha$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	266.04	266.04	266.04	266.04
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
12.90	12.90	4.34	4.34	15.80	15.80

Interaction:

$$\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed,\alpha}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed,\alpha}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

ex=0.07m $\mathsf{F}_{x.\mathsf{Ed}.\alpha} \mathsf{=} \mathsf{F}_{\alpha} ^* \mathsf{cos} \alpha$ $F_{z.Ed.\alpha} = F_{\alpha} * sin\alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha} * e_x$ $M_{z.Ed} = F_{y.Ed} \cdot e_x$



MIC-CU-MA Base Material Connector - Concrete

Design loading capacity - 3D

3/3

Page 5/5

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.39	26.39	Not decisive	Not decisive	26.39	26.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.28	1.28	0.00	0.00	0.00	0.00

Interaction:

$$F_{\alpha Rd} = F_{xRd} = F_{zRd}$$

The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction between F_x and F_z . The normal force $F_{\alpha Ed}$ in the inclined strut has to be compared with the resistance value $F_{\alpha Rd}.$

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

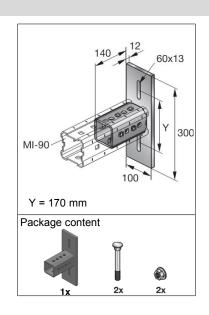
Page 1/5

Data version 1.3 I Date 12.2016

MIC-S90-AA Base Material Connector - Steel

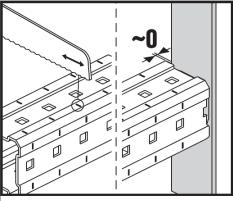
Designation Item number MIC-S90-AA 304811

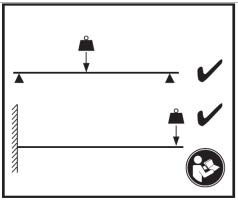
Corrosion protection:

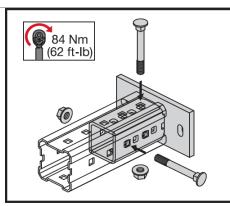

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

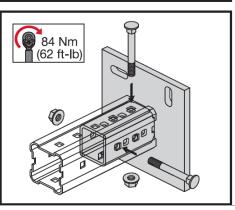
Weight:

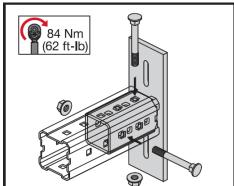
4370 g incl. components

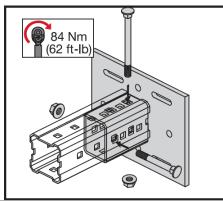

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/5

Data version 1.3 I Date 12.2016

MIC-S90-AA Base Material Connector - Steel

Possible loadii	ng cases	
Standard		

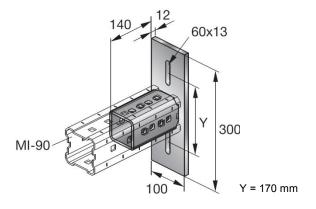
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

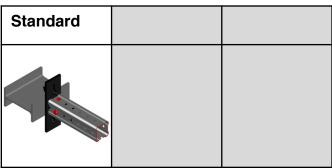
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

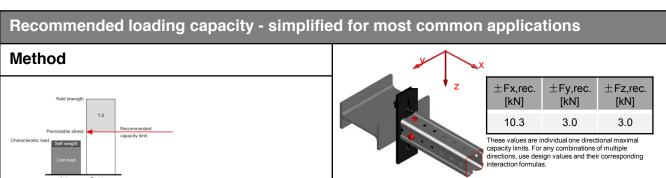

Software:

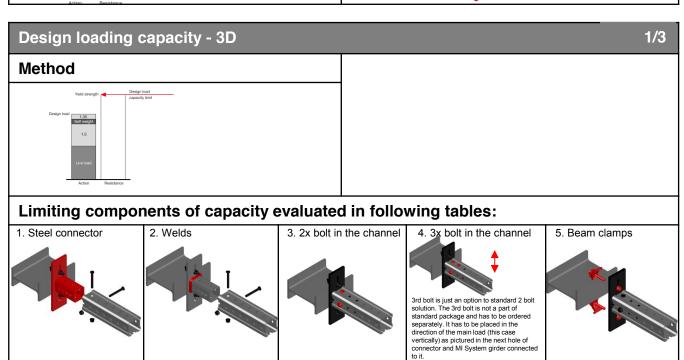
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

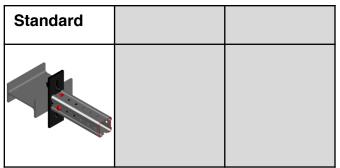

Simplified drawing:


Page 3/5


Data version 1.3 I Date 12.2016

MIC-S90-AA Base Material Connector - Steel

Loading case: Standard	Combinations covered by loading case
BOM: Connector incl. all associated components 1x MIC-S90-AA Beam clamps 2x MI-SGC M12 233859	Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 75-165mm.

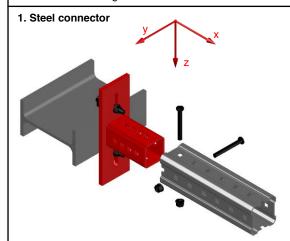


Page 4/5

MIC-S90-AA Base Material Connector - Steel

Conditions of the loading capacity tables:

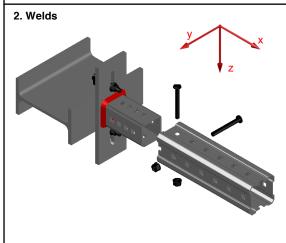
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*

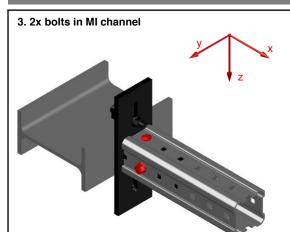

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
15.52	Not decisive	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	0.85	0.85	1.17	1.17

Interaction:

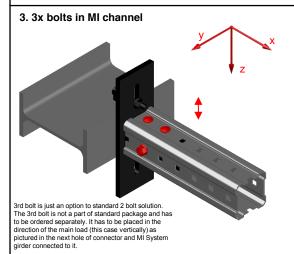
$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

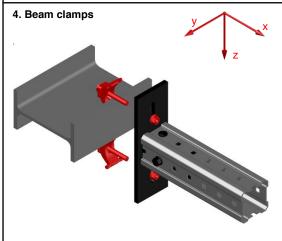

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

MIC-S90-AA Base Material Connector - Steel

Design loading capacity - 3D


3/3

Page 5/5


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
17.40	Not decisive	4.50	4.50	4.50	4.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.28	0.28	0.87	0.87	0.87	0.87

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{Y.Ed}}{F_{y.Rd}} + \frac{F_{Z.Ed}}{F_{Z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{Z.Ed}}{M_{Z.Rd}} \leq 1$$

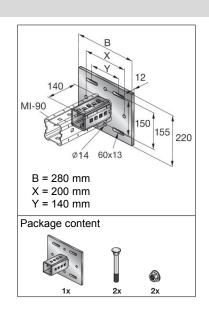
Page 1/8

Data version 1.3 I Date 12.2016

MIC-S90-A Base Material Connector - Steel

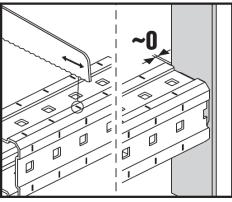
Designation Item number MIC-S90-A 304812

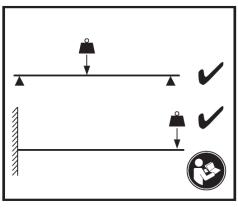
Corrosion protection:

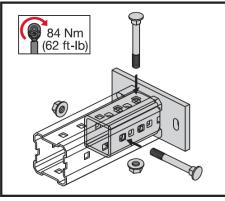

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

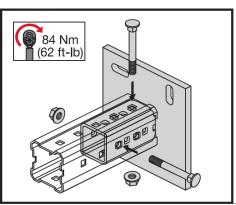
Weight:

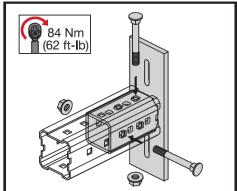
7140 g incl. components

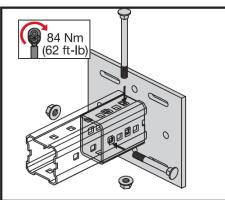

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:				
DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/8

Data version 1.3 I Date 12.2016

MIC-S90-A Base Material Connector - Steel

Possible loading cases		
Clamped	Boxed	

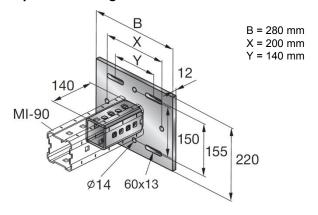
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

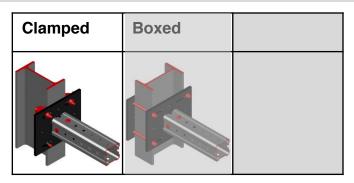
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	00.2012
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

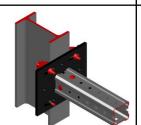
Page 3/8

Data version 1.3 I Date 12.2016

MIC-S90-A Base Material Connector - Steel

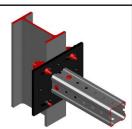
Loading case: Clamped

BOM:

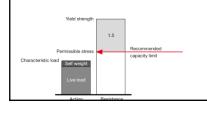

Connector incl. all associated components

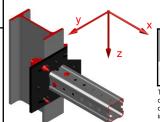
1x MIC-S90-A

304812


Bean clamps 4x MI-SGC M12

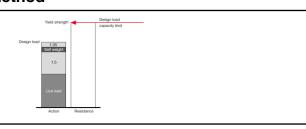
233859


Combinations covered by loading case

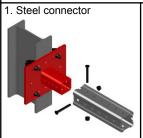

Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 75-165mm.

Recommended loading capacity - simplified for most common applications

Method


±Fx,rec. [kN]	±Fy,rec. [kN]	±Fz,rec. [kN]		
23.2 6.0 6.0				
hese values are individual one directional maximal				

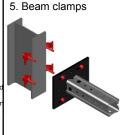
capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D

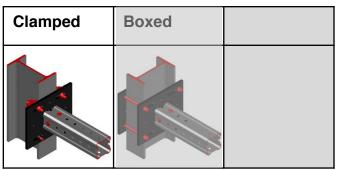
1/3


Method

Limiting components of capacity evaluated in following tables:



3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standar package and has to be ordered separately. It has to be placed in the direction of the mai load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

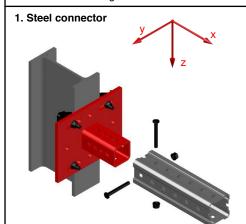


Page 4/8

MIC-S90-A Base Material Connector - Steel

Conditions of the loading capacity tables:

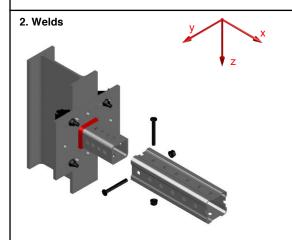
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.70	1.70	1.80	1.80

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

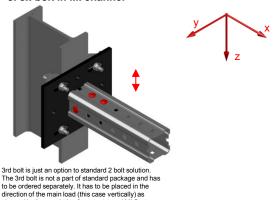
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

MIC-S90-A Base Material Connector - Steel

Design loading capacity - 3D

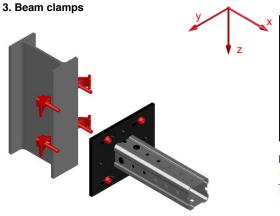
3/3

Page 5/8


3. 2x bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

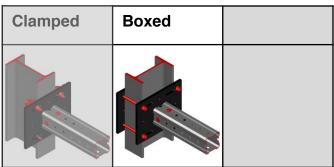

3. 3x bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

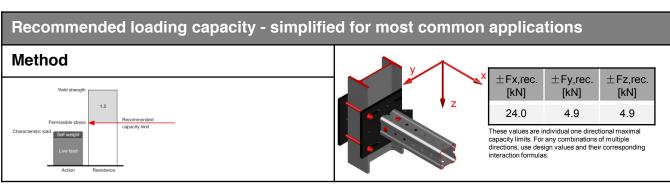
pictured in the next hole of connector and MI System girder connected to it.

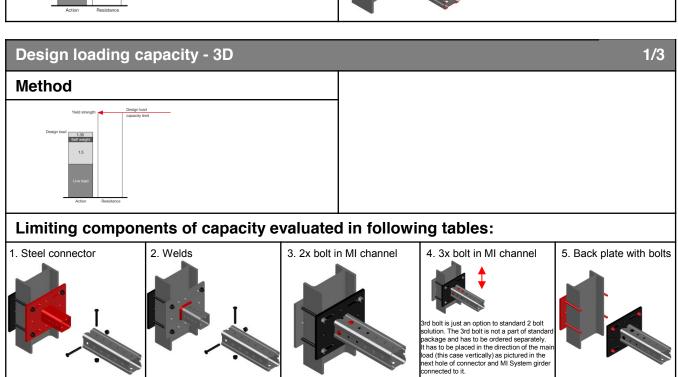
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.80	0.80	2.09	2.09	1.39	1.39


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

8x M12-F-SL WS3/4

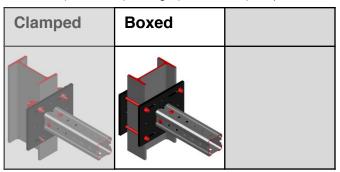
Data version 1.3 I Date 12.2016


Page 6/8


MIC-S90-A Base Material Connector - Steel

382897

Loading case: Boxed Combinations covered by loading case BOM: Connector used for a Connector incl. all associated perpendicular connection components of MI-90 girder to flange 1x MIC-S90-A 304812 of structural steel profiles. Base plate 1x MIB-SA 304821 For flange width 75-165mm. Threaded rods cut to particular length 4x AM12x1000 8.8 HDG...m 419103

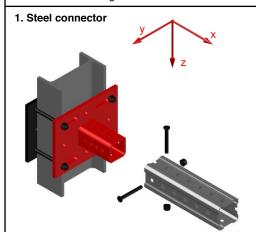


Page 7/8

MIC-S90-A Base Material Connector - Steel

Conditions of the loading capacity tables:

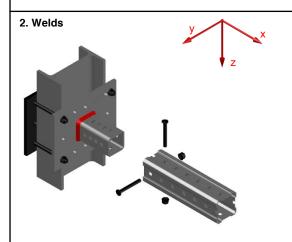
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*

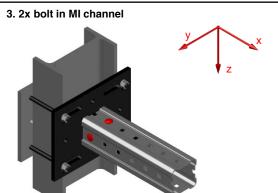

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.70	1.70	1.80	1.80

Interaction:

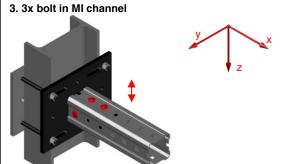
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

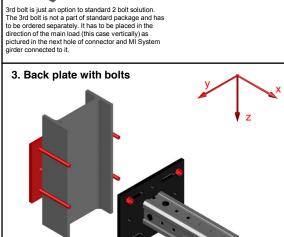

$$\frac{\textbf{F}_{\textbf{X}.\textbf{Ed}}}{\textbf{F}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{y}.\textbf{Ed}}}{\textbf{F}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{z}.\textbf{Ed}}}{\textbf{F}_{\textbf{z}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{X}.\textbf{Ed}}}{\textbf{M}_{\textbf{x}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed}}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1$$

MIC-S90-A Base Material Connector - Steel

Design loading capacity - 3D


3/3

Page 8/8


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{\textbf{F}_{\textbf{X}.\textbf{Ed}}}{\textbf{F}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{y}.\textbf{Ed}}}{\textbf{F}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{z}.\textbf{Ed}}}{\textbf{F}_{\textbf{z}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{X}.\textbf{Ed}}}{\textbf{M}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed}}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.66	0.66	11.65	11.65	7.77	7.77

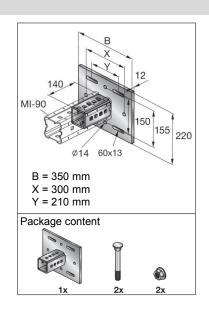
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Page 1/8

MIC-S90-B Base Material Connector - Steel

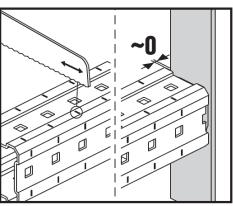
Designation	Item number_
MIC-S90-B	304813

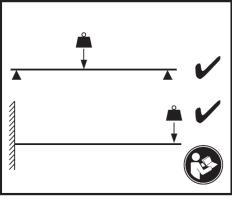
Corrosion protection:

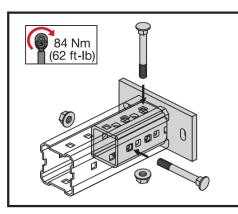

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

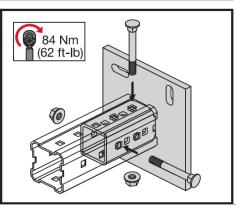
Weight:

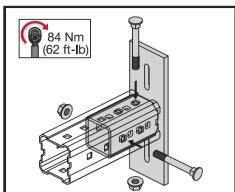
8590 g incl. components

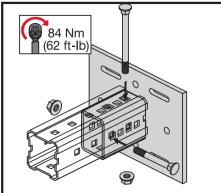

Submittal text:

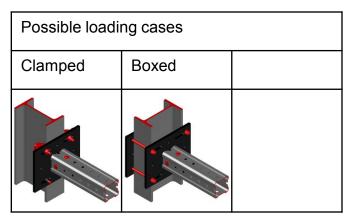

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:				
DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:





Page 2/8

Data version 1.3 I Date 12.2016

MIC-S90-B Base Material Connector - Steel

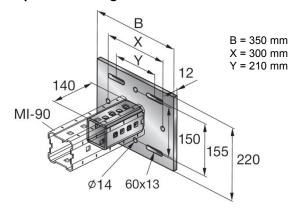
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

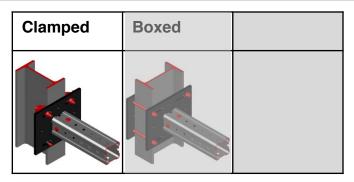
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

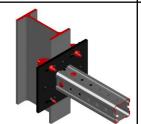
Page 3/8

Data version 1.3 I Date 12.2016

MIC-S90-B Base Material Connector - Steel

Loading case: Clamped

BOM:

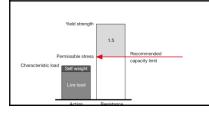

Connector incl. all associated components

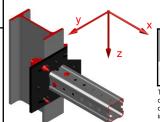
1x MIC-S90-B

304813

Bean clamps 4x MI-SGC M12

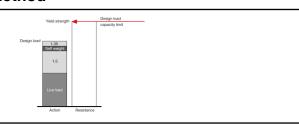
233859


Combinations covered by loading case

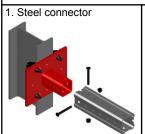

Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 165-235mm.

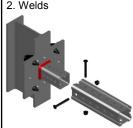
Recommended loading capacity - simplified for most common applications

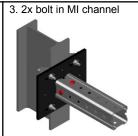
Method


±Fx,rec. [kN]	\pm Fy,rec. [kN]	\pm Fz,rec. [kN]
17.5	6.0	6.0

capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D

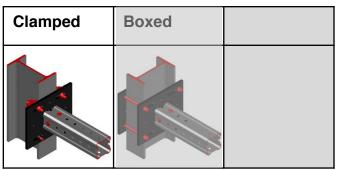

1/3


Method

Limiting components of capacity evaluated in following tables:

3rd bolt is just an option to standard 2 bolt olution. The 3rd bolt is not a part of standard ackage and has to be ordered separately. t has to be placed in the direction of the mai oad (this case vertically) as pictured in the ext hole of connector and MI System girder

5. Beam clamps

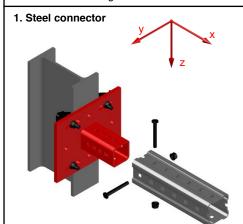

Installation Technical Manual - Technical Data - MI system

Page 4/8

MIC-S90-B Base Material Connector - Steel

Conditions of the loading capacity tables:

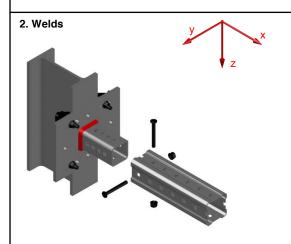
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.33	1.33	1.64	1.64

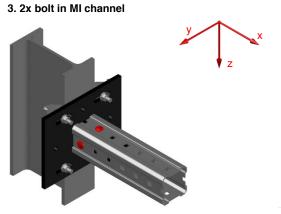
Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	3.67	3.67	3.67	3.67

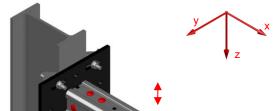
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Data version 1.3 I Date 12.2016 Page 5/8


MIC-S90-B Base Material Connector - Steel

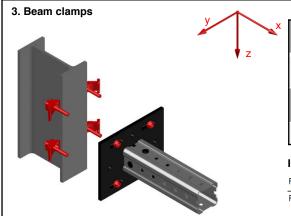
Design loading capacity - 3D

3/3


3. 3x bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

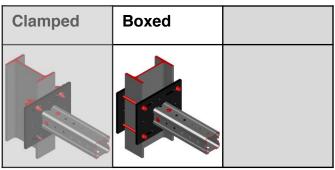
Interaction:


$$\frac{\mathsf{F}_{\mathsf{X}}.\mathsf{Ed}}{\mathsf{F}_{\mathsf{X}}.\mathsf{Rd}} + \frac{\mathsf{F}_{\mathsf{y}}.\mathsf{Ed}}{\mathsf{F}_{\mathsf{y}}.\mathsf{Rd}} + \frac{\mathsf{F}_{\mathsf{z}}.\mathsf{Ed}}{\mathsf{F}_{\mathsf{z}}.\mathsf{Rd}} + \frac{\mathsf{M}_{\mathsf{x}}.\mathsf{Ed}}{\mathsf{M}_{\mathsf{x}}.\mathsf{Rd}} + \frac{\mathsf{M}_{\mathsf{y}}.\mathsf{Ed}}{\mathsf{M}_{\mathsf{y}}.\mathsf{Rd}} + \frac{\mathsf{M}_{\mathsf{z}}.\mathsf{Ed}}{\mathsf{M}_{\mathsf{z}}.\mathsf{Rd}} \leq 1$$

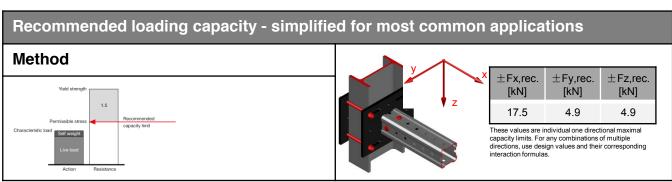
	z
,	

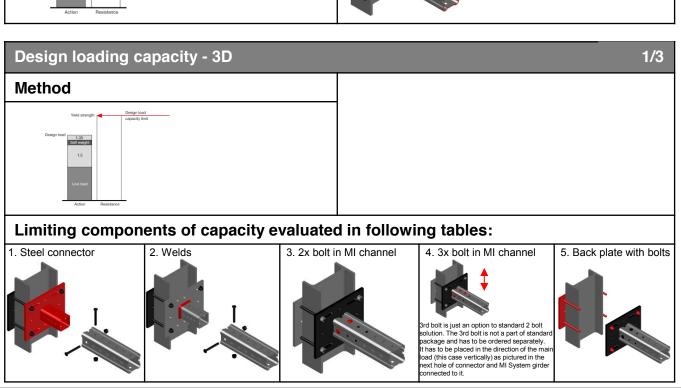
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.09	2.09	2.09	

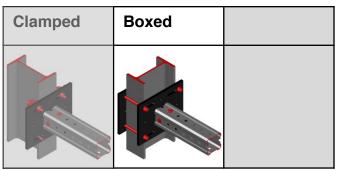
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 6/8


Data version 1.3 I Date 12.2016

MIC-S90-B Base Material Connector - Steel

Loading case: Boxed Combinations covered by loading case BOM: Connector used for a Connector incl. all associated perpendicular connection components of MI-90 girder to flange 1x MIC-S90-B 304813 of structural steel profiles. Base plate 1x MIB-SB 304822 For flange width 165-235mm. Threaded rods cut to particular length 4x AM12x1000 8.8 HDG...m 419103 8x M12-F-SL WS3/4 382897

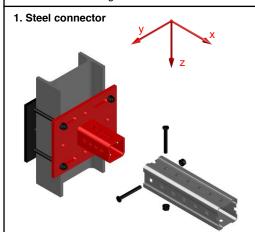


Page 7/8

MIC-S90-B Base Material Connector - Steel

Conditions of the loading capacity tables:

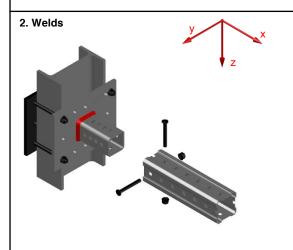
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

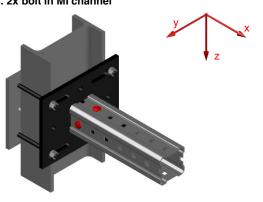
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.33	1.33	1.64	1.64

Interaction:

$$\frac{\textbf{F}_{\textbf{X}.\textbf{Ed}}}{\textbf{F}_{\textbf{X}.\textbf{Rd}}} + \frac{|\textbf{F}_{\textbf{y}.\textbf{Ed}}|}{\textbf{F}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{z}.\textbf{Ed}}}{\textbf{F}_{\textbf{z}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{x}.\textbf{Ed}}}{\textbf{M}_{\textbf{x}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed}}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.99	5.99	3.67	3.67	3.67	3.67

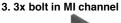
$$\frac{\textbf{F}_{\textbf{X}.\textbf{Ed}}}{\textbf{F}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{y}.\textbf{Ed}}}{\textbf{F}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{z}.\textbf{Ed}}}{\textbf{F}_{\textbf{z}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{x}.\textbf{Ed}}}{\textbf{M}_{\textbf{x}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed}}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1$$

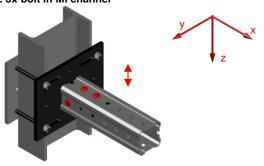

MIC-S90-B Base Material Connector - Steel

Design loading capacity - 3D

3/3

Page 8/8

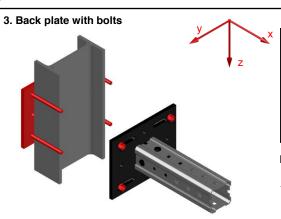




+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standard package and has to be ordered separately. It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.87	0.87	11.65	11.65	11.65	11.65

$$\frac{F_{X,Ed}}{F_{X,Ed}} + \frac{F_{Y,Ed}}{F_{Y,Ed}} + \frac{F_{Z,Ed}}{F_{Z,Ed}} + \frac{M_{X,Ed}}{M_{X,Ed}} + \frac{M_{Y,Ed}}{M_{Y,Ed}} + \frac{M_{Z,Ed}}{M_{Z,Ed}} \le 1$$

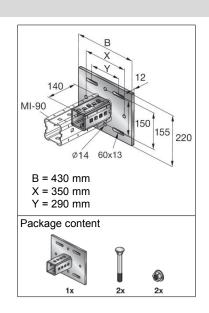
Page 1/8

Data version 1.3 I Date 12.2016

MIC-S90-C Base Material Connector - Steel

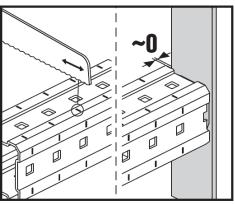
Designation Item number MIC-S90-C 304814

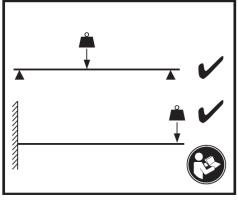
Corrosion protection:

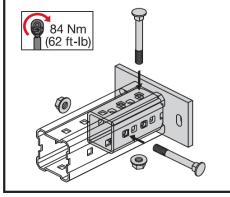

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

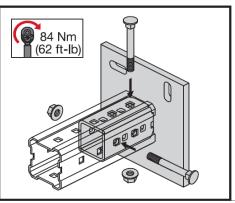
Weight:

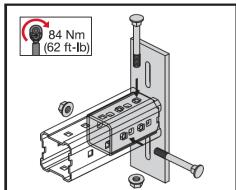
8590 g incl. components

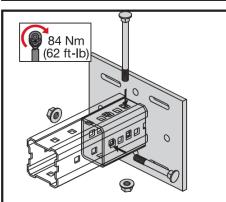

Submittal text:

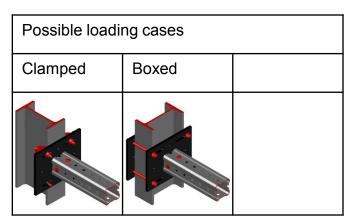

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector:				
DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:





Page 2/8

MIC-S90-C Base Material Connector - Steel

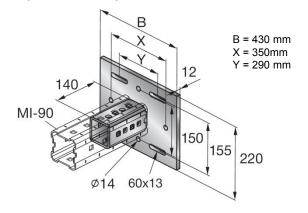
Design criteria used for loading capacity

Methodology:

Analytic calculation

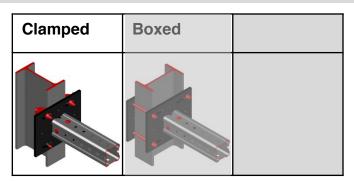
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions – densities, self-weight, imposed loads for buildings	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	00.2012
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

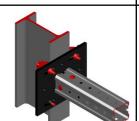
Simplified drawing:

Page 3/8

MIC-S90-C Base Material Connector - Steel

Loading case: Clamped

BOM:

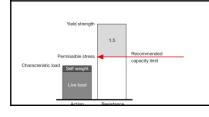

Connector incl. all associated components

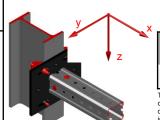
1x MIC-S90-C Bean clamps

304814

4x MI-SGC M12

233859


Combinations covered by loading case

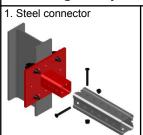

Connector used for a perpendicular connection of MI-90 girder to flange of structural steel profiles. For flange width 235-300mm.

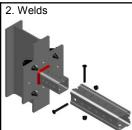
Recommended loading capacity - simplified for most common applications

Method

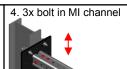
±Fx,rec.	±Fy,rec.	±Fz,rec.	
[kN]	[kN]	[kN]	
13.9	6.0	6.0	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

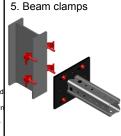

Design loading capacity - 3D

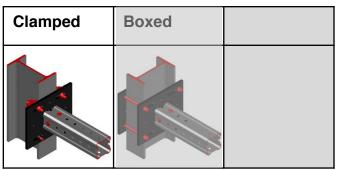

1/3

Method



Limiting components of capacity evaluated in following tables:

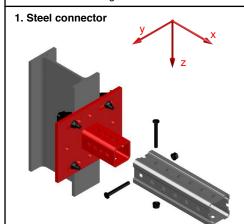



3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standa package and has to be ordered separately. It has to be placed in the direction of the mai oad (this case vertically) as pictured in the next hole of connector and MI System girde

MIC-S90-C Base Material Connector - Steel

Conditions of the loading capacity tables:

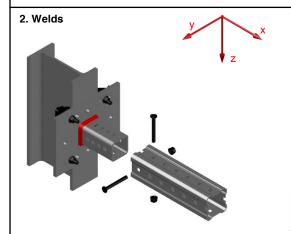
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Page 4/8

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

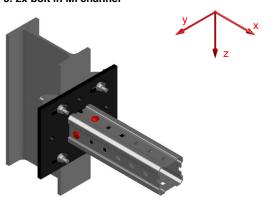
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.14	1.14	1.40	1.40

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

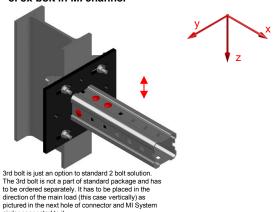
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


MIC-S90-C Base Material Connector - Steel

Design loading capacity - 3D

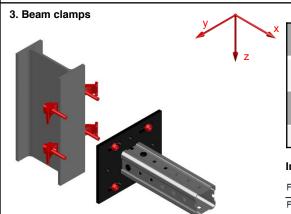
3/3

Page 5/8



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24

$$\frac{\textbf{F}_{\textbf{X}}.\textbf{Ed}}{\textbf{F}_{\textbf{X}}.\textbf{Rd}} + \frac{\textbf{F}_{\textbf{y}}.\textbf{Ed}}{\textbf{F}_{\textbf{y}}.\textbf{Rd}} + \frac{\textbf{F}_{\textbf{z}}.\textbf{Ed}}{\textbf{F}_{\textbf{z}}.\textbf{Rd}} + \frac{\textbf{M}_{\textbf{x}}.\textbf{Ed}}{\textbf{M}_{\textbf{x}}.\textbf{Rd}} + \frac{\textbf{M}_{\textbf{y}}.\textbf{Ed}}{\textbf{M}_{\textbf{y}}.\textbf{Rd}} + \frac{\textbf{M}_{\textbf{z}}.\textbf{Ed}}{\textbf{M}_{\textbf{z}}.\textbf{Rd}} \leq 1$$

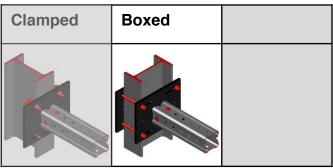

3. 3x bolt in MI channel

girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

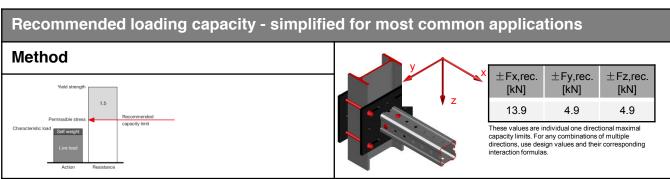
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

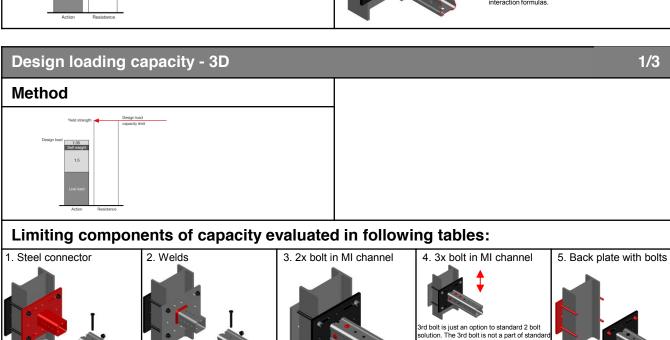
	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	34.80	Not decisive	9.00	9.00	9.00	9.00
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
ı	1.31	1.31	2.09	2.09	3.65	3.65


$$\frac{\textbf{F}_{\textbf{X}.\textbf{Ed}}}{\textbf{F}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{y}.\textbf{Ed}}}{\textbf{F}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{F}_{\textbf{z}.\textbf{Ed}}}{\textbf{F}_{\textbf{z}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{X}.\textbf{Ed}}}{\textbf{M}_{\textbf{X}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed}}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1$$

Page 6/8

8x M12-F-SL WS3/4

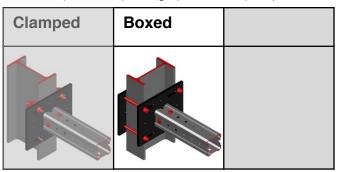

Data version 1.3 I Date 12.2016


MIC-S90-C Base Material Connector - Steel

382897

Loading case: Boxed Combinations covered by loading case BOM: Connector used for a Connector incl. all associated perpendicular connection components of MI-90 girder to flange 1x MIC-S90-C 304814 of structural steel profiles. Base plate 1x MIB-SC 304823 For flange width 235-300mm. Threaded rods cut to particular length 4x AM12x1000 8.8 HDG...m 419103

ackage and has to be ordered separately. It has to be placed in the direction of the mai load (this case vertically) as pictured in the next hole of connector and MI System girder

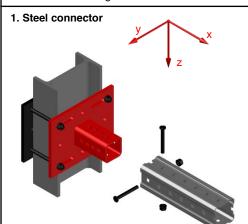

connected to it.

Page 7/8

MIC-S90-C Base Material Connector - Steel

Conditions of the loading capacity tables:

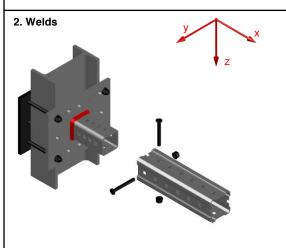
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

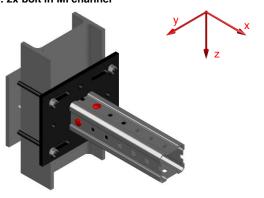
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	68.38	68.38	68.38	68.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
4.24	4.24	1.14	1.14	1.40	1.40

Interaction:

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

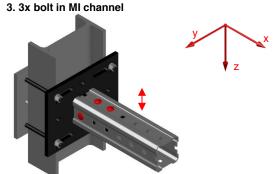
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
244.38	244.38	99.77	99.77	99.77	99.77
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.99	5.99	3.67	3.67	3.67	3.67

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

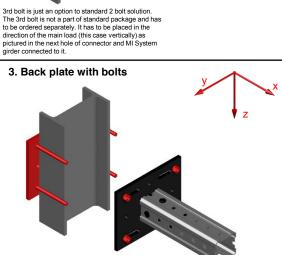

MIC-S90-C Base Material Connector - Steel

Design loading capacity - 3D

3/3


Page 8/8

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
69.03	69.03	36.30	36.30	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
2.61	2.61	1.24	1.24	1.24	1.24


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
103.50	103.50	72.58	72.58	36.30	36.30
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.92	3.92	2.48	2.48	1.24	1.24

Interaction:

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	29.47	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	11.65	11.65	20.39	20.39

$$\frac{\mathsf{F}_{\mathsf{X},\mathsf{Ed}}}{\mathsf{F}_{\mathsf{X},\mathsf{Rd}}} + \frac{\mathsf{F}_{\mathsf{y},\mathsf{Ed}}}{\mathsf{F}_{\mathsf{y},\mathsf{Rd}}} + \frac{\mathsf{F}_{\mathsf{z},\mathsf{Ed}}}{\mathsf{F}_{\mathsf{z},\mathsf{Rd}}} + \frac{\mathsf{M}_{\mathsf{X},\mathsf{Ed}}}{\mathsf{M}_{\mathsf{X},\mathsf{Rd}}} + \frac{\mathsf{M}_{\mathsf{y},\mathsf{Ed}}}{\mathsf{M}_{\mathsf{y},\mathsf{Rd}}} + \frac{\mathsf{M}_{\mathsf{z},\mathsf{Ed}}}{\mathsf{M}_{\mathsf{z},\mathsf{Rd}}} \leq 1$$

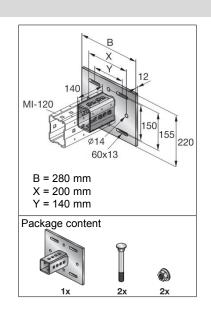
Page 1/8

Data version 1.3 I Date 12.2016

MIC-S120-A Base Material Connector - Steel

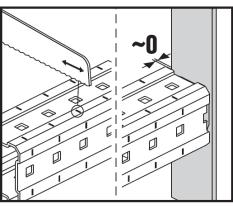
Designation Item number MIC-S120-A 304818

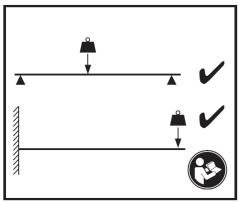
Corrosion protection:

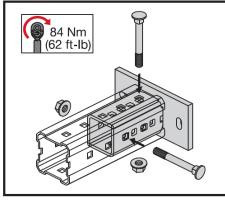

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

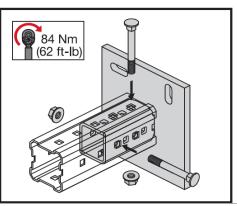
Weight:

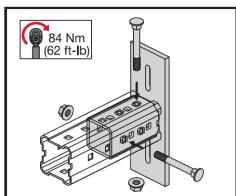
7895 g incl. components

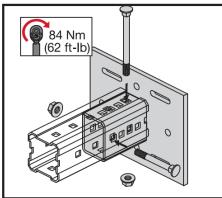

Submittal text:

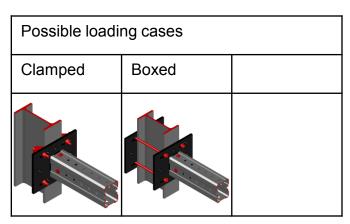

Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547,	r 005 N	5 000 N	5 040000 N	0 00700 N
S235JR - DIN EN 10025; Bolt, Nut:	$f_y = 235 \frac{N}{mm^2}$	$f_{\rm u} = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:





Page 2/8

MIC-S120-A Base Material Connector - Steel

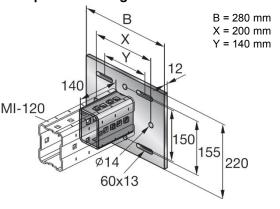
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

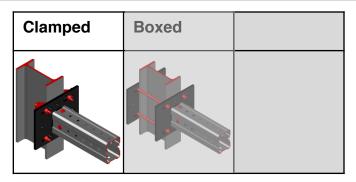
03.2003	 EN 1990 	•
	 EN 1991-1-1 	•
03.2012		
	 EN 1993-1-1 	•
03.2012		
3-	• EN 1993-1-3	•
09.2010		
	• EN 1993-1-5	•
06.2012		
	• EN 1993-1-8	•
03.2012		
09.20 06.20	• EN 1993-1-5	•


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/8

Data version 1.3 I Date 12.2016

MIC-S120-A Base Material Connector - Steel

Loading case: Clamped

BOM:

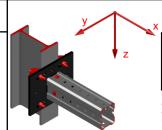
Connector incl. all associated components

1x MIC-S120-A

Bean clamps 4x MI-SGC M12 304818

233859

Combinations covered by loading case

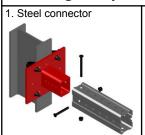

Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm.

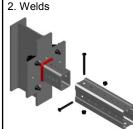
Recommended loading capacity - simplified for most common applications

Method

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
23.2	6.0	6.0

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

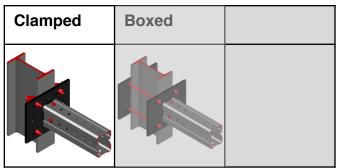

Design loading capacity - 3D


1/3

Method

Limiting components of capacity evaluated in following tables:

3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standar package and has to be ordered separately.

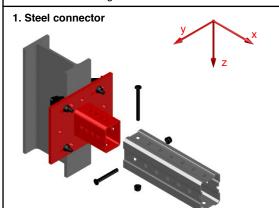

It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder onnected to it.

5. Beam clamps

MIC-S120-A Base Material Connector - Steel

Conditions of the loading capacity tables:

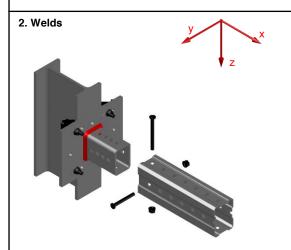
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Page 4/8

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

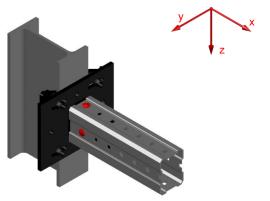
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	2.64	2.64	3.20	3.20

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.55	10.55	5.87	5.87	7.06	7.06

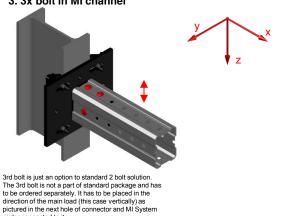
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


MIC-S120-A Base Material Connector - Steel

Design loading capacity - 3D

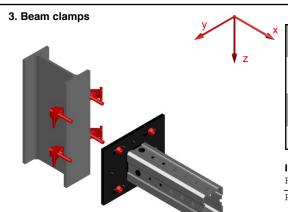
3/3

Page 5/8



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35

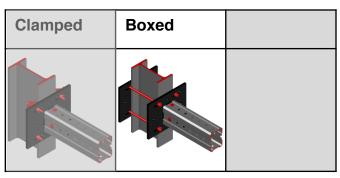
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$



girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.80	0.80	2.26	2.26	1.39	1.39

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 6/8

Data version 1.3 I Date 12.2016

MIC-S120-A Base Material Connector - Steel

Loading case: Boxed

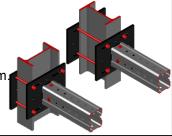
BOM:

Connector incl. all associated components

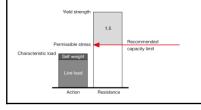
1x MIC-S120-A 304818

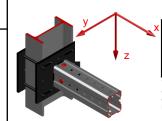
Base plate

1x MIB-SA 304821


Threaded rods cut to particular length 4x AM12x1000 8.8 HDG...m 419103

8x M12-F-SL WS3/4 382897


Combinations covered by loading case

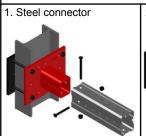

Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 75-165mm

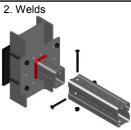
Recommended loading capacity - simplified for most common applications

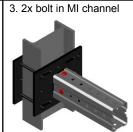
Method

±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
24.0	4.9	4.9

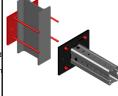
These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding


Design loading capacity - 3D

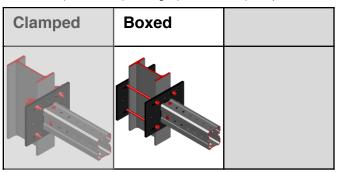

1/3


Method

Limiting components of capacity evaluated in following tables:



3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of stand package and has to be ordered separately. It has to be placed in the direction of the main load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

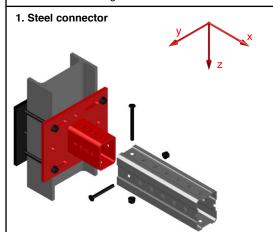

Installation Technical Manual - Technical Data - MI system

Page 7/8

MIC-S120-A Base Material Connector - Steel

Conditions of the loading capacity tables:

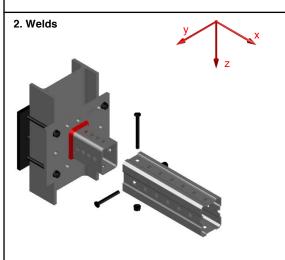
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*

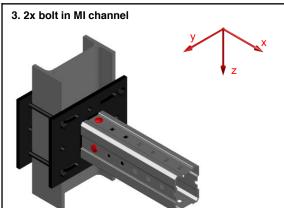

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	2.64	2.64	3.20	3.20

Interaction:

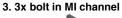
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.55	10.55	5.87	5.87	7.06	7.06

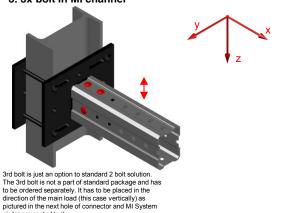

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

MIC-S120-A Base Material Connector - Steel

Design loading capacity - 3D

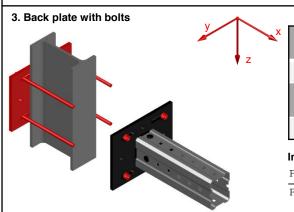

3/3

Page 8/8



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$



girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.66	0.66	12.62	12.62	7.77	7.77

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

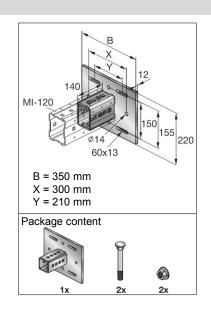
Page 1/8

Data version 1.3 I Date 12.2016

MIC-S120-B Base Material Connector - Steel

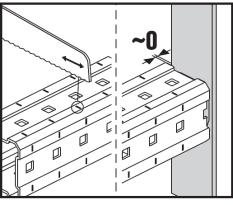
Designation Item number MIC-S120-B 304819

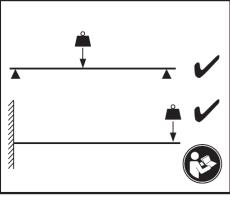
Corrosion protection:

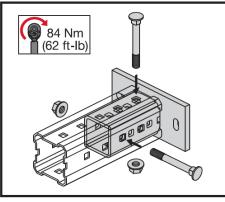

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

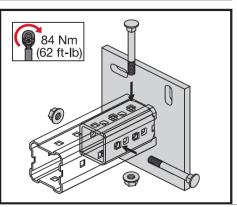
Weight:

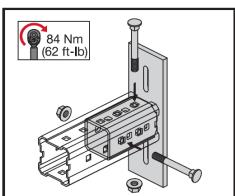
8990 g incl. components

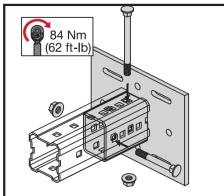

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




wateriai properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_{y} = 640 \frac{N}{mm^{2}}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/8

Data version 1.3 I Date 12.2016

MIC-S120-B Base Material Connector - Steel

Possible loading cases				
Clamped	Boxed			

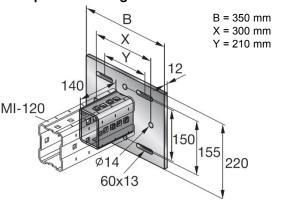
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

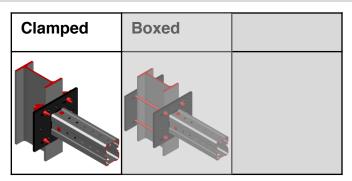
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/8

Data version 1.3 I Date 12.2016

MIC-S120-B Base Material Connector - Steel

Loading case: Clamped

BOM:

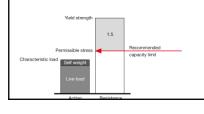
Connector incl. all associated components

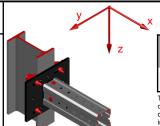
1x MIC-S120-B

Bean clamps

4x MI-SGC M12

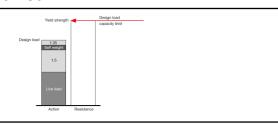
304819 233859


Combinations covered by loading case

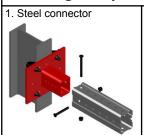

Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 165-235mm.

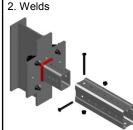
Recommended loading capacity - simplified for most common applications

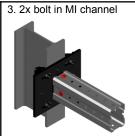
Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
17.5	6.0	6.0

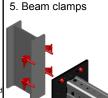
These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3

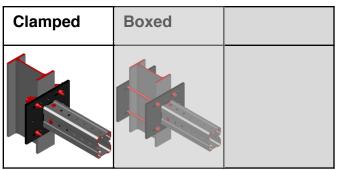

Method

Limiting components of capacity evaluated in following tables:



3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standard package and has to be ordered separately.

It has to be placed in the direction of the mai load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

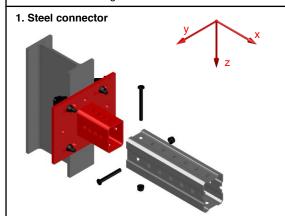

Installation Technical Manual - Technical Data - MI system

Page 4/8

MIC-S120-B Base Material Connector - Steel

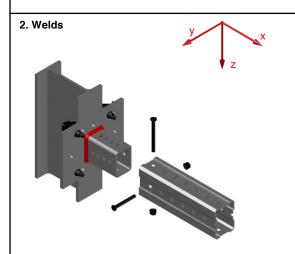
Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3


Summary of design loads*

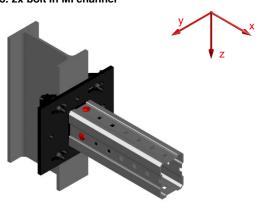
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	2.54	2.54	2.98	2.98

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.55	10.55	5.87	5.87	7.06	7.06

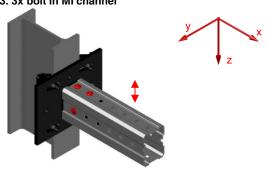
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 5/8

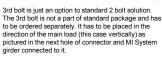
MIC-S120-B Base Material Connector - Steel

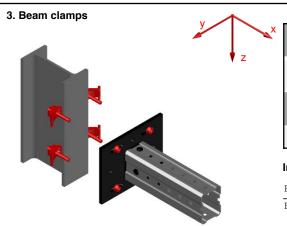
Design loading capacity - 3D

3/3



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

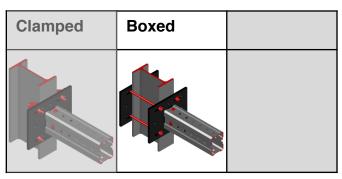


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.06	1.06	2.26	2.26	2.09	2.09

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

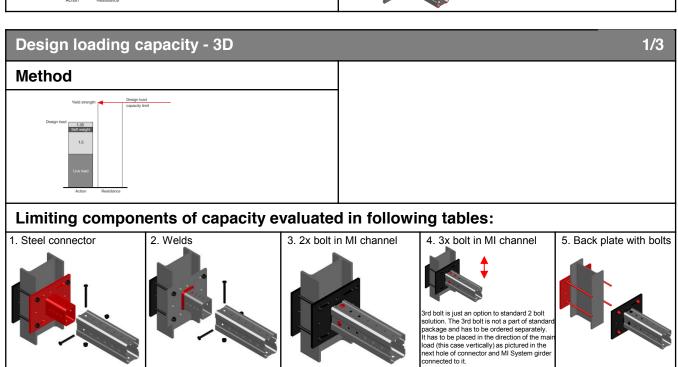

Page 6/8

4x AM12x1000 8.8 HDG...m

8x M12-F-SL WS3/4

Data version 1.3 I Date 12.2016

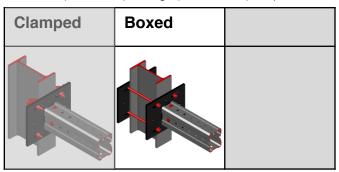
MIC-S120-B Base Material Connector - Steel



419103

382897

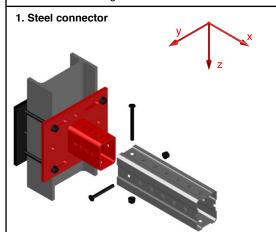
Loading case: Boxed Combinations covered by loading case BOM: Connector used for a Connector incl. all associated perpendicular connection components of MI-120 girder to flange 1x MIC-S120-B 304819 of structural steel profiles. Base plate 1x MIB-SB 304822 For flange width 165-235mm Threaded rods cut to particular length


Recommended loading capacity - simplified for most common applications Method \pm Fx,rec. \pm Fy,rec. \pm Fz,rec. [kN] [kN] [kN] 17.5 4.9 4.9 These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding

MIC-S120-B Base Material Connector - Steel

Conditions of the loading capacity tables:

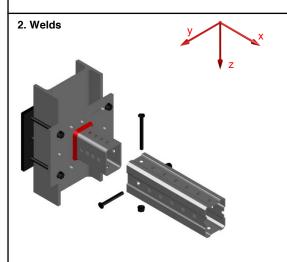
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

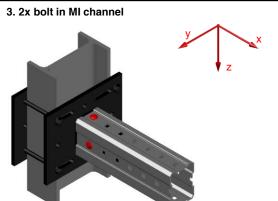
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	2.54	2.54	2.98	2.98

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.55	10.55	5.87	5.87	7.06	7.06

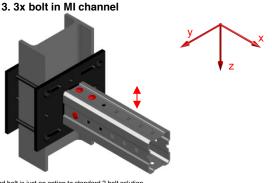
Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

MIC-S120-B Base Material Connector - Steel

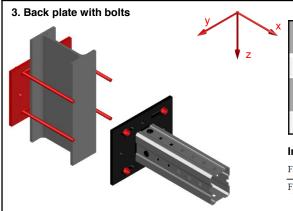
Design loading capacity - 3D

3/3


Page 8/8

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$



Ond hold to the dear and the dear dead of held and dear	
3rd bolt is just an option to standard 2 bolt solution.	
The 3rd bolt is not a part of standard package and has	
to be ordered separately. It has to be placed in the	
direction of the main load (this case vertically) as	
pictured in the next hole of connector and MI System	
girder connected to it	

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.87	0.87	12.62	12.62	11.65	11.65

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

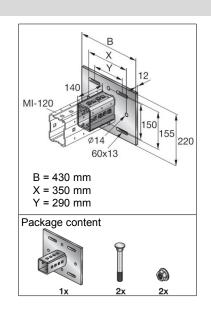
Page 1/8

Data version 1.3 I Date 12.2016

MIC-S120-C Base Material Connector - Steel

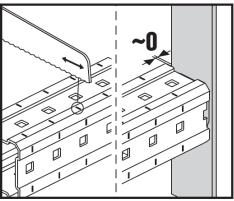
Designation Item number MIC-S120-C 304820

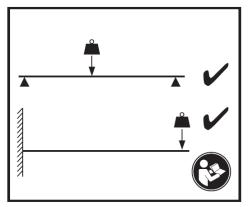
Corrosion protection:

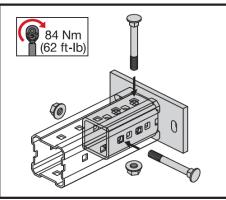

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

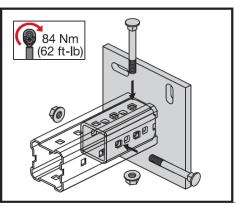
Weight:

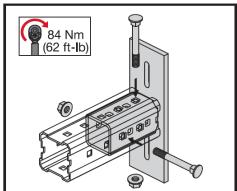
10650 g incl. components

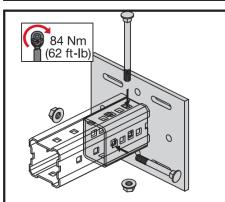

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-120 girder to a steel beam. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using bolts through fixed holes. Comes in different sizes to fit various steel beam sizes.




wateriai properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025:	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_{y} = 640 \frac{N}{mm^{2}}$	$f_{u} = 800 \frac{N}{mm^{2}}$	mm^2 E = 210000 $\frac{N}{mm^2}$	mm^2 $G = 80769 \frac{N}{mm^2}$


Instruction For Use:



Page 2/8

MIC-S120-C Base Material Connector - Steel

Possible loading cases					
Clamped	Clamped Boxed				

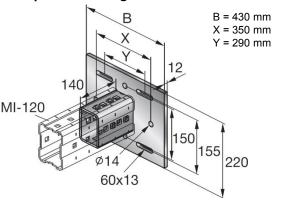
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

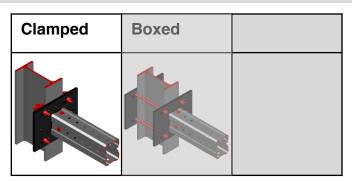
03.2003	• EN 1990	•
	 EN 1991-1-1 	•
03.2012		
	 EN 1993-1-1 	•
03.2012		
3-	• EN 1993-1-3	•
09.2010		
	• EN 1993-1-5	•
06.2012		
	• EN 1993-1-8	•
03.2012		
09.20 06.20	• EN 1993-1-5	•


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/8

Data version 1.3 I Date 12.2016

MIC-S120-C Base Material Connector - Steel

Loading case: Clamped

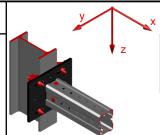
BOM:

Connector incl. all associated components

1x MIC-S120-C

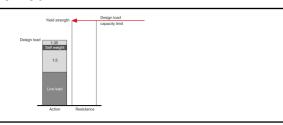
Bean clamps 4x MI-SGC M12 304820 233859

Combinations covered by loading case

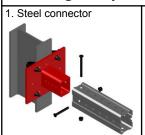

Connector used for a perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm.

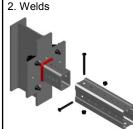
Recommended loading capacity - simplified for most common applications

Method


±Fx,rec.	±Fy,rec.	±Fz,rec.
[kN]	[kN]	[kN]
13.9	6.0	6.0

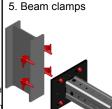
These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding


Design loading capacity - 3D

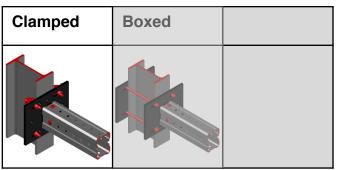

1/3

Method

Limiting components of capacity evaluated in following tables:



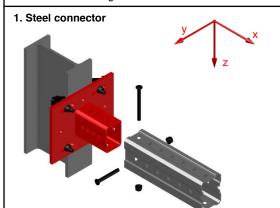
3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standa package and has to be ordered separately.


It has to be placed in the direction of the mai load (this case vertically) as pictured in the next hole of connector and MI System girder connected to it.

MIC-S120-C Base Material Connector - Steel

Conditions of the loading capacity tables:

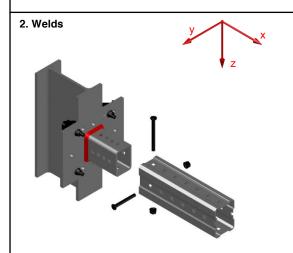
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]	[kNcm]
6.78	6.78	2.10	2.10	2.78	2.78

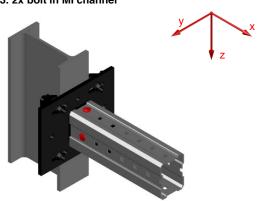
Interaction:

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd [kNcm]	-Mx,Rd [kNcm]	+My,Rd [kNcm]	-My,Rd [kNcm]	+Mz,Rd [kNcm]	-Mz,Rd [kNcm]
10.55	10.55	5.87	5.87	7.06	7.06

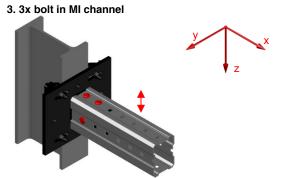
Interaction:

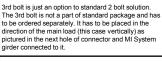
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

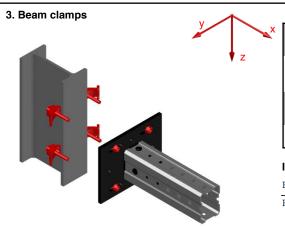

MIC-S120-C Base Material Connector - Steel

Design loading capacity - 3D

3/3

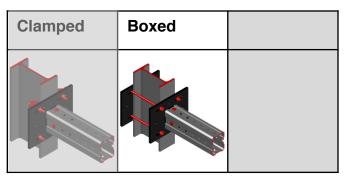

Page 5/8


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.31	1.31	2.26	2.26	3.65	3.65

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Page 6/8

Data version 1.3 I Date 12.2016

MIC-S120-C Base Material Connector - Steel

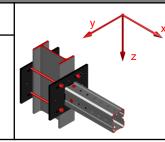
Loading case: Boxed Combinations covered by loading case BOM: Connector used for a

1x MIC-S120-C 304820 Base plate 1x MIB-SC 304823 Threaded rods cut to particular length 4x AM12x1000 8.8 HDG...m 419103

Connector incl. all associated

8x M12-F-SL WS3/4 382897


perpendicular connection of MI-120 girder to flange of structural steel profiles. For flange width 235-300mm



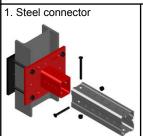
Recommended loading capacity - simplified for most common applications

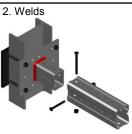
Method

components

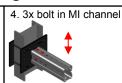
±Fx,rec. [kN]	±Fy,rec. [kN]	\pm Fz,rec. [kN]	
13.9	4.9	4.9	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding


Design loading capacity - 3D

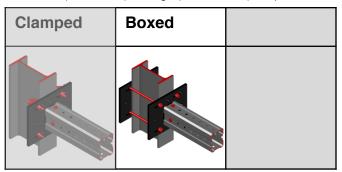

1/3

Method



Limiting components of capacity evaluated in following tables:

3rd bolt is just an option to standard 2 bolt solution. The 3rd bolt is not a part of standar package and has to be ordered separately. It has to be placed in the direction of the mai load (this case vertically) as pictured in the next hole of connector and MI System girder

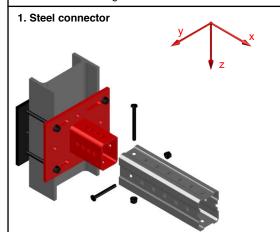


Page 7/8

MIC-S120-C Base Material Connector - Steel

Conditions of the loading capacity tables:

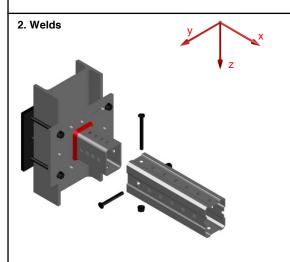
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/3

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

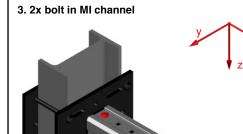
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	68.38	68.38	117.23	117.23
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
6.78	6.78	2.10	2.10	2.78	2.78

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
336.02	336.02	99.77	99.77	174.59	174.59
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.55	10.55	5.87	5.87	7.06	7.06

Interaction:

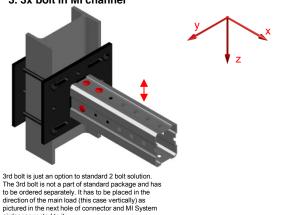

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

MIC-S120-C Base Material Connector - Steel

Design loading capacity - 3D

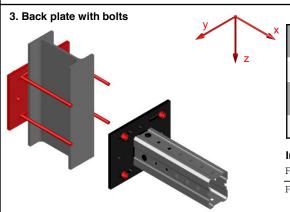
3/3

Page 8/8



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
75.08	75.08	41.47	41.47	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
3.59	3.59	1.90	1.90	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$



girder connected to it.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.53	112.53	82.94	82.94	41.47	41.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.68	5.68	3.79	3.79	1.35	1.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{X.Ed}}{M_{X.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	29.47	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	12.62	12.62	20.39	20.39

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

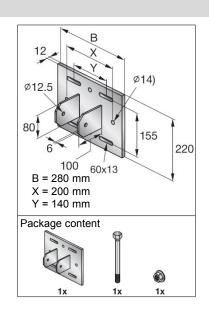
Page 1/8

Data version 1.3 I Date 12.2016

MIC-SA-MA Base Material Connector - Steel

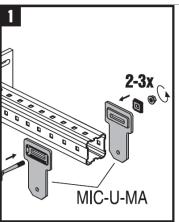
Designation Item number MIC-SA-MA 304815

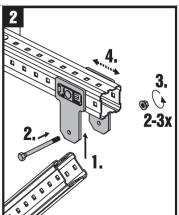
Corrosion protection:

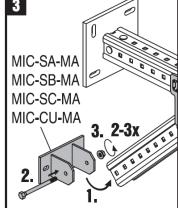

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

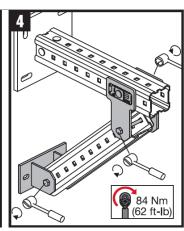
Weight:

6290 g incl. components

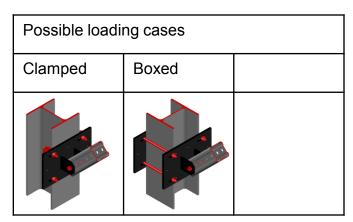

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:



Page 2/8

MIC-SA-MA Base Material Connector - Steel

Design criteria used for loading capacity

Methodology:

Analytic calculation

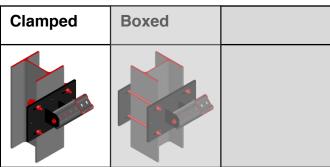
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

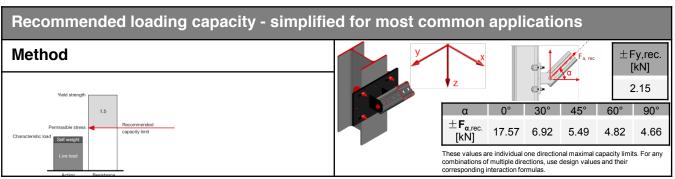
Software:

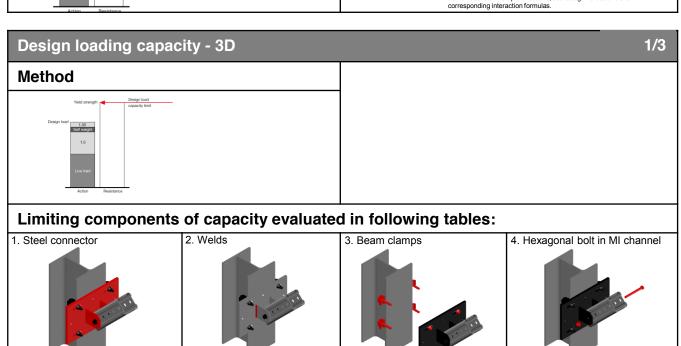
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

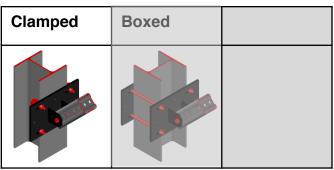
Simplified drawing:




Page 3/8

MIC-SA-MA Base Material Connector - Steel

Loading case: Clamped Combinations covered by loading case BOM: Connector used for an angled connection Connector incl. all associated of MI-90 to components structural steel profiles MIC-SA-MA 304815 Beam clamps (bracing). 4x MI-SGC M12 233859 For flange width 75-165mm.

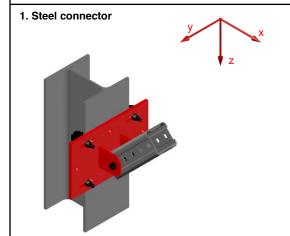


Page 4/8

MIC-SA-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

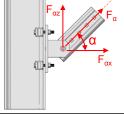


Design loading capacity - 3D

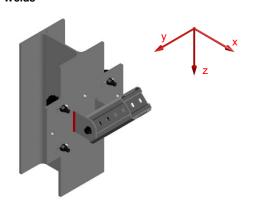
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

				•	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
58.60	73.93	3.22	3.22	37.13	37.13
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.81	1.81	2.60	2.60	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

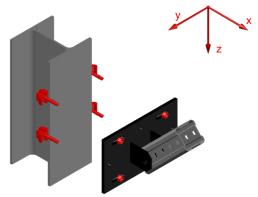
with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{-} = F_{-} = F_{-} = A^* e_{-}$ $\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

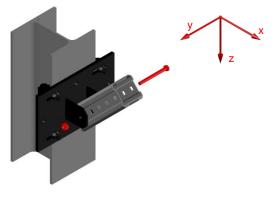
with: $e_x = 0.07m$ $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $M_{y.Ed.\alpha}$ $M_{z.Ed}$ M_{y.Rd}


Page 5/8

MIC-SA-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.07	2.07	1.39	1.39

Interaction:

$$\begin{split} & \text{with: } \mathbf{e_x} = \mathbf{0.07m} \\ & \mathbf{F_{x.Ed.\alpha}} = \mathbf{F_\alpha^*cos}\mathbf{\Omega} \\ & \mathbf{F_{z.Ed.\alpha}} = \mathbf{F_\alpha^*sin}\mathbf{\Omega} \rightarrow \mathbf{M_{y.Ed.\alpha}} = \mathbf{F_{z.Ed.\alpha}^*e_x} \\ & \mathbf{M_{z.Ed}} = \mathbf{F_{y.Ed}^*e_x} \end{split}$$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

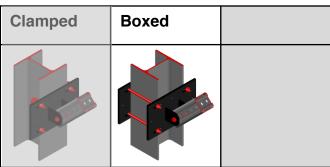
4. Hexagonal bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.29	1.29	0.00	0.00	0.00	0.00

Interaction:

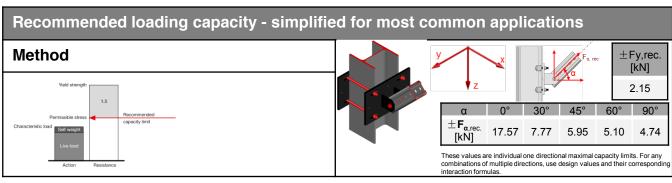
 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

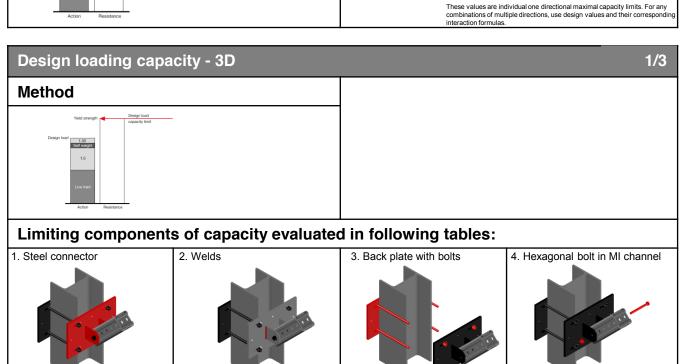
The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd.}$


$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

8x M12-F-SL WS3/4

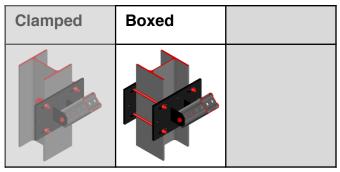
Data version 1.3 I Date 12.2016


Page 6/8


MIC-SA-MA Base Material Connector - Steel

382897

Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to structural 1x MIC-SA-MA 304815 steel profiles Base plate 1x MIB-SA 304821 (bracing). Threaded rods cut to particular length For flange width 75-165mm. 4x AM12x1000 8.8 HDG...m 419103

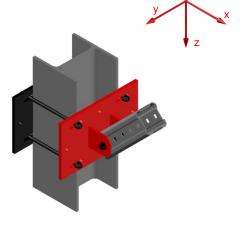


Page 7/8

MIC-SA-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

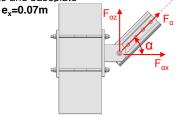

Design loading capacity - 3D

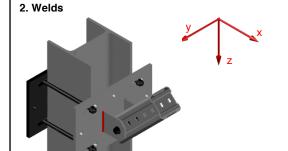
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


				•	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
58.60	73.93	3.22	3.22	37.13	37.13
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.81	1.81	2.60	2.60	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities:

Interaction:

with ex = horizontal eccentricity between hexagonal bolt axis and baseplate

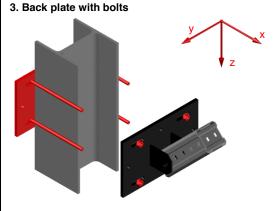
 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha} * sin \alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha} * e_{x}$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed,\alpha}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$

_						
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	274.92	274.92	224.47	224.47	224.47	224.47
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with: $e_x = 0.07m$ $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin\alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{v.Ed}^* e_x$

F_{y.Rd} F_{z.Rd} M_{x.Rd} M_{v.Rd}


Page 8/8

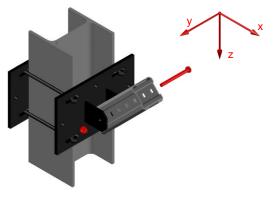
MIC-SA-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	56.07	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	11.56	11.56	7.77	7.77

Interaction::


with: $e_x = 0.07m$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

 $\begin{aligned} & F_{z,Ed,\alpha} = F_{\alpha}{}^*sin\alpha -> M_{y,Ed,\alpha} = F_{z,Ed,\alpha}{}^*e_x \\ & M_{z,Ed} = F_{y,Ed}{}^*e_x \end{aligned}$

$$\frac{f_{x.Ed.\alpha}}{f_{x.Rd}} + \frac{f_{y.Ed}}{f_{y.Rd}} + \frac{f_{z.Ed.\alpha}}{f_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

4. Hexagonal bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.29	1.29	0.00	0.00	0.00	0.00

Interaction:

 $\textbf{F}_{\alpha Rd}$ = $\textbf{F}_{\textbf{x}Rd}$ = $\textbf{F}_{\textbf{z}Rd}$ The resistance $\textbf{F}_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

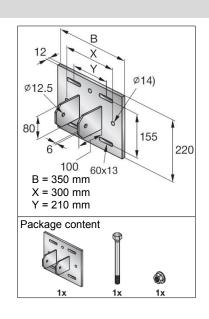
Page 1/8

Data version 1.3 I Date 12.2016

MIC-SB-MA Base Material Connector - Steel

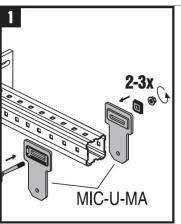
Designation Item number MIC-SB-MA 304816

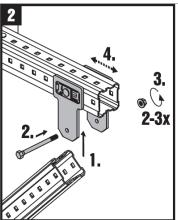
Corrosion protection:

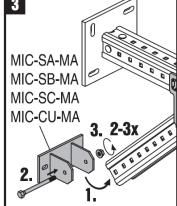

Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

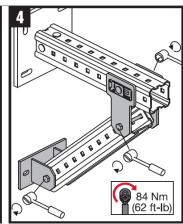
Weight:

7740 g incl. components


Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{\scriptscriptstyle N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_u = 800 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

Page 2/8

MIC-SB-MA Base Material Connector - Steel

Possible loading cases					
Clamped	Boxed				

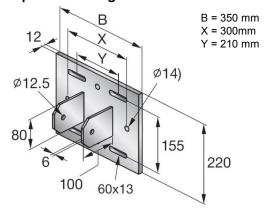
Design criteria used for loading capacity

Methodology:

Analytic calculation

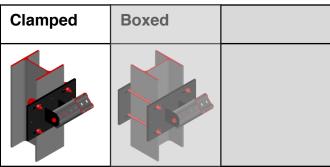
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

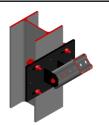
Page 3/8

MIC-SB-MA Base Material Connector - Steel

Loading case: Clamped

304816

BOM:


Connector incl. all associated

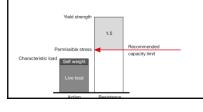
components

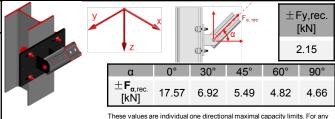
MIC-SB-MA

Beam clamps

4x MI-SGC M12 233859

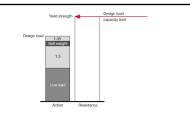
Combinations covered by loading case


Connector used for an angled connection of MI-90 to structural steel profiles (bracing).

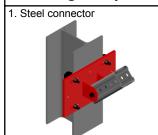

For flange width 165-235mm.

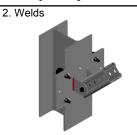
Recommended loading capacity - simplified for most common applications

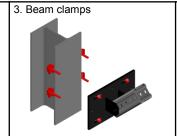
Method

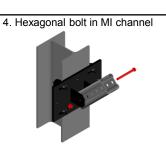


combinations of multiple directions, use design values and their corresponding interaction formulas.

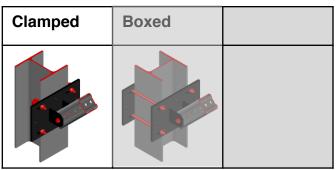

Design loading capacity - 3D


1/3


Method



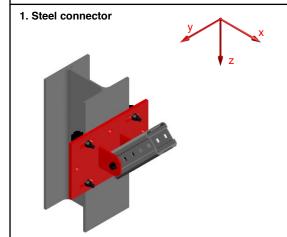
Limiting components of capacity evaluated in following tables:



MIC-SB-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

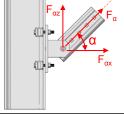

Design loading capacity - 3D

2/3

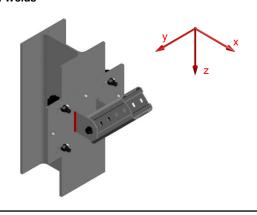
Page 4/8

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
43.19	50.50	3.22	3.22	23.25	23.25
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.13	1.13	1.63	1.63	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

> with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

$$\begin{split} & \textbf{F}_{\textbf{x}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha} ^{\star} \textbf{cos} \textbf{Q} \\ & \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha} ^{\star} \textbf{sin} \textbf{Q} \rightarrow \textbf{M}_{\textbf{y}.\textbf{Ed},\alpha} = \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha} ^{\star} \textbf{e}_{\textbf{x}} \\ & \textbf{M}_{\textbf{z}.\textbf{Ed}} = \textbf{F}_{\textbf{y}.\textbf{Ed}} ^{\star} \textbf{e}_{\textbf{x}} \\ & \frac{F_{\textbf{x}}.\textbf{Ed},\alpha}{F_{\textbf{x}}.\textbf{Rd}} + \frac{M_{\textbf{y}}.\textbf{Ed},\alpha}{M_{\textbf{y}}.\textbf{Rd}} + \frac{M_{\textbf{z}}.\textbf{Ed}}{M_{\textbf{z}}.\textbf{Rd}} + \frac{M_{\textbf{x}}.\textbf{Ed}}{M_{\textbf{x}}.\textbf{Rd}} \leq 1 \end{split}$$

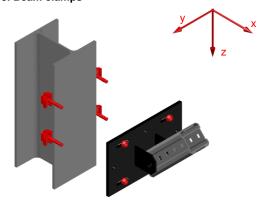
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with:
$$e_x = 0.07m$$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$
 $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$
 $M_{z.Ed} = F_{y.Ed}^* e_x$

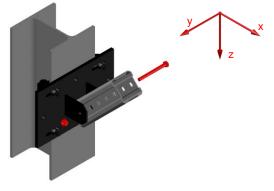
$$\frac{F_{X.Ed.\alpha}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 5/8

MIC-SB-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.07	2.07	2.80	2.80

Interaction:

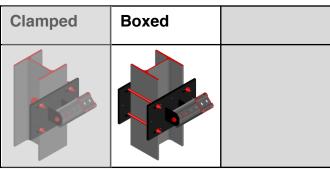
$$\begin{split} & F_{x.Ed,\alpha} = F_{\alpha}^{} \star cos \alpha \\ & F_{z.Ed,\alpha} = F_{\alpha}^{} \star sin \alpha \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^{} \star e_{x} \\ & M_{z.Ed} = F_{y.Ed}^{} \star e_{x} \end{split}$$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

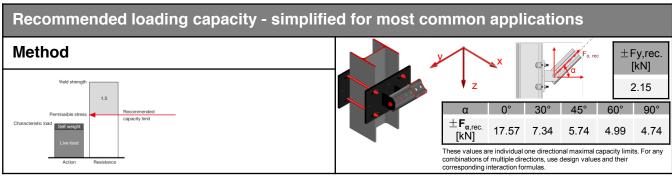
4. Hexagonal bolt in MI channel

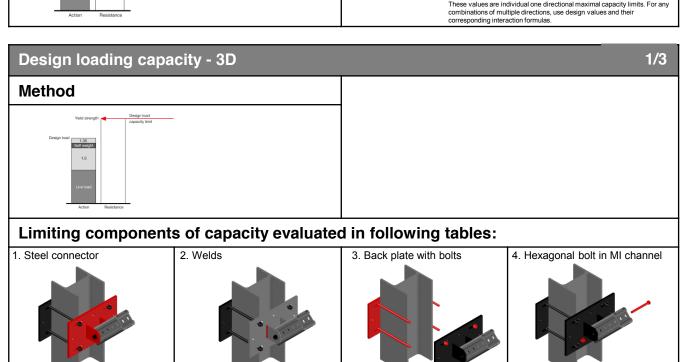
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.29	1.29	0.00	0.00	0.00	0.00

Interaction:


 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

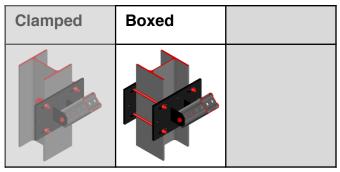
The normal force F_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd.}$


$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$


Page 6/8 Data version 1.3 I Date 12.2016

MIC-SB-MA Base Material Connector - Steel

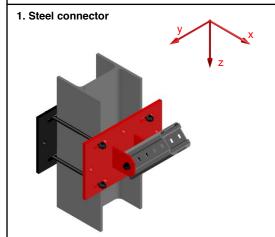
Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to structural 1x MIC-SB-MA 304816 steel profiles Base plate 1x MIB-SB 304822 (bracing). Threaded rods cut to particular length For flange width 165-235mm. 4x AM12x1000 8.8 HDG...m 419103 8x M12-F-SL WS3/4 382897



MIC-SB-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

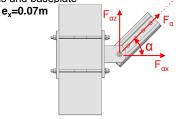

Design loading capacity - 3D

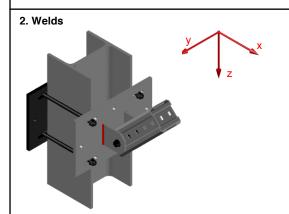
2/3

Page 7/8

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


				•	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
43.19	50.50	3.22	3.22	23.25	23.25
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.13	1.13	1.63	1.63	0.23	0.23

includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

> with ex = horizontal eccentricity between hexagonal bolt axis and baseplate

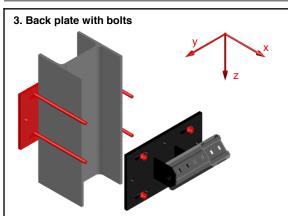
 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* \sin \alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $\frac{F_{x.Ed.\alpha}}{F_{x.Ed.\alpha}} + \frac{M_{y.Ed.\alpha}}{F_{x.Ed.\alpha}} + \frac{M_{z.Ed.\alpha}}{F_{x.Ed.\alpha}} + \frac{M_{x.Ed.\alpha}}{F_{x.Ed.\alpha}}$ M_{v.Rd} M_{z.Rd} M_{x.Rd} F_{x.Rd}

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with:
$$e_x = 0.07m$$

 $F_{x.Ed,\alpha} = F_{\alpha}^* cos \alpha$
 $F_{z.Ed,\alpha} = F_{\alpha}^* sin \alpha -> M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x$
 $M_{z.Ed} = F_{y.Ed}^* e_x$

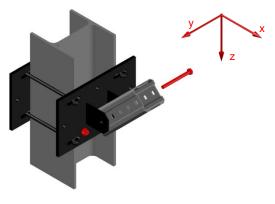

$$\frac{F_{x.Ed,\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed,\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed,\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Page 8/8

MIC-SB-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	42.26	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.88	0.88	11.56	11.56	15.64	15.64

Interaction::

$$\begin{split} \text{with: } & e_x = 0.07m \\ & F_{x.Ed.\alpha} = F_\alpha^* cos \Omega \\ & F_{z.Ed.\alpha} = F_\alpha^* sin \Omega -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x \\ & M_{z.Ed} = F_{y.Ed}^* e_x \end{split}$$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. Hexagonal bolt in MI channel

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.29	1.29	0.00	0.00	0.00	0.00

Interaction:

 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Page 1/8

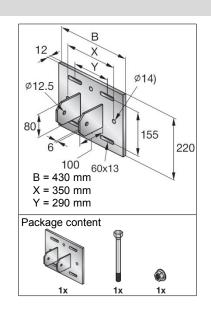
Data version 1.3 I Date 12.2016

MIC-SC-MA Base Material Connector - Steel

Designation Item number MIC-SC-MA 304817

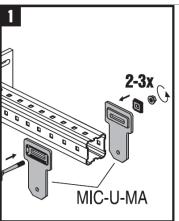
Corrosion protection:

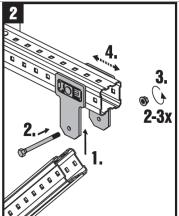
Connector 55 µm - DIN EN ISO 1461 Bolt, Nut 45 µm - DIN EN ISO 1461

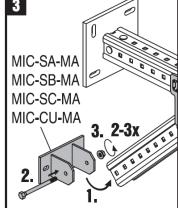

Weight:

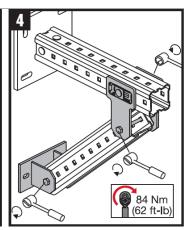
9400 g incl. components

Submittal text:


Material properties:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 girder to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_y = 640 \frac{N}{mm^2}$	$f_{\rm u} = 800 \frac{N}{mm^2}$	E = 210000 $\frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

Page 2/8

MIC-SC-MA Base Material Connector - Steel

Possible loading cases					
Clamped					

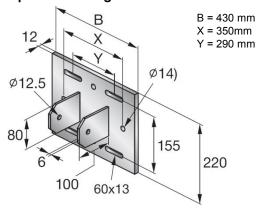
Design criteria used for loading capacity

Methodology:

Analytic calculation

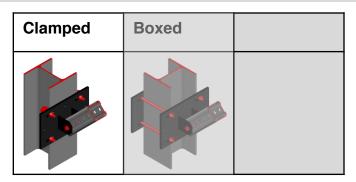
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

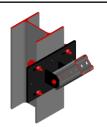
Simplified drawing:

Page 3/8

MIC-SC-MA Base Material Connector - Steel

Loading case: Clamped

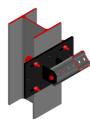
BOM:


Connector incl. all associated

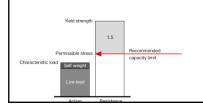
components

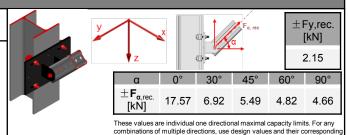
MIC-SC-MA 304817

Beam clamps

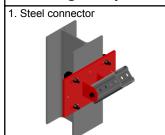

4x MI-SGC M12 233859

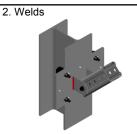
Combinations covered by loading case

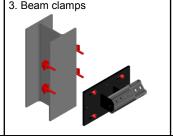

Connector used for an angled connection of MI-90 to structural steel profiles (bracing).

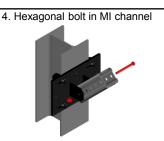

For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications

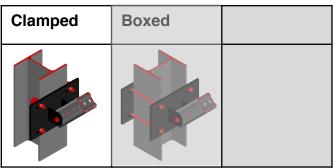

Method






Design loading capacity - 3D 1/3 Method

Limiting components of capacity evaluated in following tables:

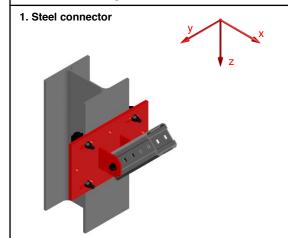


Page 4/8

MIC-SC-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

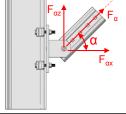


Design loading capacity - 3D

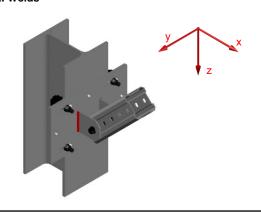
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.47	38.38	3.22	3.22	15.78	15.78
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.77	0.77	1.10	1.10	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

> with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $\frac{F_{X.Ed.\alpha}}{F_{v Rd}} + \frac{M_{y.Ed.\alpha}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$

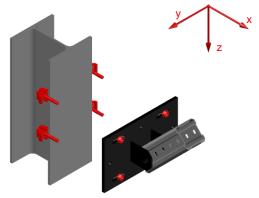
	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	274.92	274.92	224.47	224.47	224.47	224.47
I	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
	10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with:
$$e_x = 0.07m$$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos\Omega$
 $F_{z.Ed.\alpha} = F_{\alpha}^* sin\Omega \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$
 $M_{z.Ed} = F_{y.Ed}^* e_x$

$$\frac{F_{x.Ed,\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed,\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed,\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 2$$


Page 5/8

MIC-SC-MA Base Material Connector - Steel

Design loading capacity - 3D

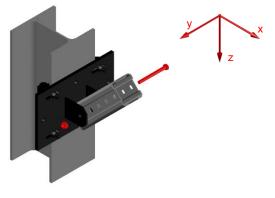
3/3

3. Beam clamps

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.31	1.31	2.07	2.07	4.51	4.51

Interaction:

with: $e_x = 0.07m$


 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

 $\mathbf{F}_{z.\mathsf{Ed}.\alpha} = \mathbf{F}_{\alpha}^{\star} \mathsf{sin} \alpha -\!\!\!\!> \mathbf{M}_{y.\mathsf{Ed}.\alpha} = \mathbf{F}_{z.\mathsf{Ed}.\alpha}^{} \!\!\!\!^{\star} \mathbf{e}_{x}$

 $M_{z.Ed} = F_{y.Ed}^* e_x$

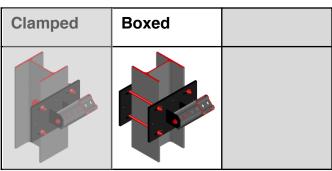
$$\frac{{}^{\mathbf{F}}\mathbf{x}.\mathbf{Ed}.\alpha}{{}^{\mathbf{F}}\mathbf{x}.\mathbf{Rd}} + \frac{{}^{\mathbf{F}}\mathbf{y}.\mathbf{Ed}}{{}^{\mathbf{F}}\mathbf{y}.\mathbf{Rd}} + \frac{{}^{\mathbf{F}}\mathbf{z}.\mathbf{Ed}.\alpha}{{}^{\mathbf{F}}\mathbf{z}.\mathbf{Rd}} + \frac{{}^{\mathbf{M}}\mathbf{x}.\mathbf{Ed}}{{}^{\mathbf{M}}\mathbf{x}.\mathbf{Rd}} + \frac{{}^{\mathbf{M}}\mathbf{y}.\mathbf{Ed}.\alpha}{{}^{\mathbf{M}}\mathbf{y}.\mathbf{Rd}} + \frac{{}^{\mathbf{M}}\mathbf{z}.\mathbf{Ed}}{{}^{\mathbf{M}}\mathbf{z}.\mathbf{Rd}} \leq$$

4. Hexagonal bolt in MI channel

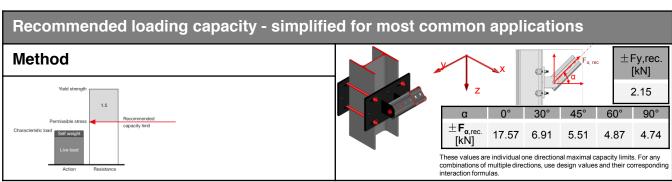
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.29	1.29	0.00	0.00	0.00	0.00

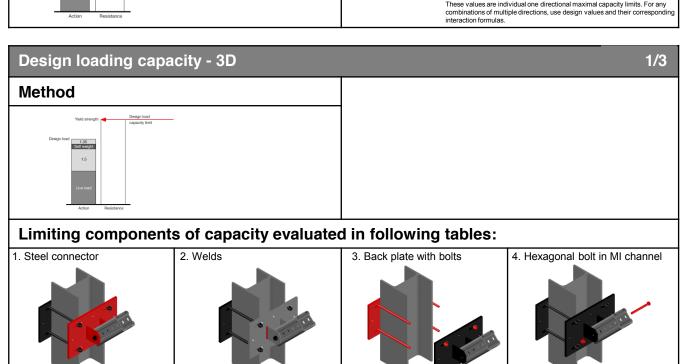
Interaction:

 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.


The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}

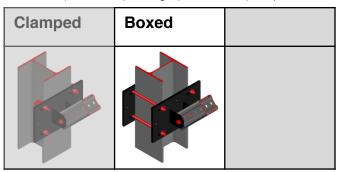
$$\frac{F_{\alpha,Ed}}{F_{\alpha,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \le 1$$


Page 6/8


Data version 1.3 I Date 12.2016

MIC-SC-MA Base Material Connector - Steel

Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to 1x MIC-SC-MA 304817 structural steel Base plate 1x MIB-SC 304823 profiles (bracing). Threaded rods cut to particular length For flange width 235-300mm. 4x AM12x1000 8.8 HDG...m 419103 8x M12-F-SL WS3/4 382897

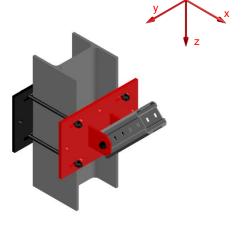


Page 7/8

MIC-SC-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

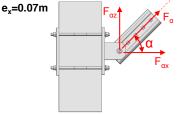

Design loading capacity - 3D

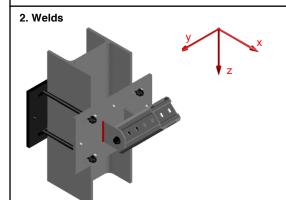
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


				•	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.47	38.38	3.22	3.22	15.78	15.78
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.77	0.77	1.10	1.10	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities:

Interaction:

with ex = horizontal eccentricity between hexagonal bolt axis and baseplate

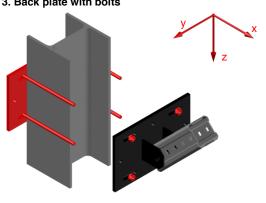
 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin\alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{y.Ed} * e_x$ $\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{M_{y,Ed,\alpha}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with: $e_x = 0.07m$ $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $\begin{aligned} & F_{z.Ed,\alpha} = F_{\alpha}^* sin\alpha \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x \\ & M_{z.Ed} = F_{y.Ed}^* e_x \end{aligned}$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$


Page 8/8

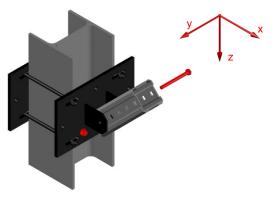
MIC-SC-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	33.10	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	11.56	11.56	25.15	25.15

Interaction::


with: $e_x = 0.07m$ $\mathbf{F}_{\mathsf{x.Ed.}\alpha} = \mathbf{F}_{\alpha}{}^* \mathbf{cos} \mathbf{\Omega}$

 $\mathbf{F}_{z.\mathsf{Ed}.\alpha} = \mathbf{F}_{\alpha}^{*} \mathsf{sin} \alpha -\!\!\!\!> \mathbf{M}_{y.\mathsf{Ed}.\alpha} = \mathbf{F}_{z.\mathsf{Ed}.\alpha}^{*} \mathbf{e}_{x}$

 $M_{z.Ed} = F_{y.Ed}^* e_x$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

4. Hexagonal bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.36	26.36	Not decisive	Not decisive	26.36	26.36
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.29	1.29	0.00	0.00	0.00	0.00

Interaction:

 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd.}$

$$\frac{F_{\pmb{\alpha}.Ed}}{F_{\pmb{\alpha}.Rd}} + \frac{M_{\pmb{x}.Ed}}{M_{\pmb{x}.Rd}} \leq 1$$

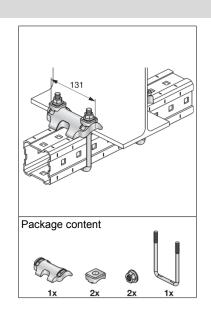
Page 1/4

MI-DGC 90 Base Material Connector - Steel

Designation	Item number
MI-DGC 90	233860

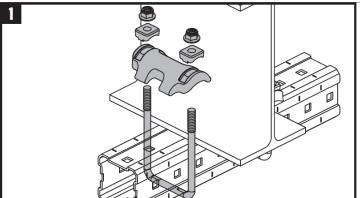
Corrosion protection:

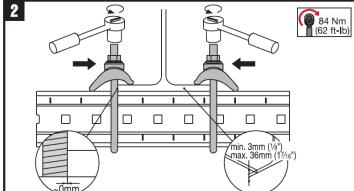
Clamp 55 µm - DIN EN ISO 1461 U-Bolt, Nut 45 µm - DIN EN ISO 1461


Weight:

1015.6 g incl. components

Submittal text:


Material properties:


Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-90 or MIQ-90 girder to steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Clamp:				
Steel EN-GJMB-350-10 - DIN EN 1562	2,			
Steel EN-GJMW-400-5 - DIN EN 1562	<u>.</u>			
Steel EN-GJMB-450-6 - EN 1562	$f_y = 270 \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_{v} = 640 \frac{N}{2}$	f = 800 - N	$E = 210000 \frac{N}{2}$	$G = 80769 \frac{N}{2}$

Instruction For Use:

Page 2/4

MI-DGC 90 Base Material Connector - Steel

Possible loading cases		
Standard		

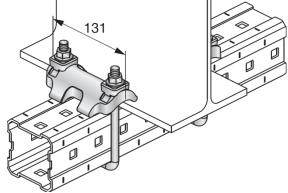
Design criteria used for loading capacity

Methodology:

- Analytic calculation
- Hardware tests

Standards and codes:

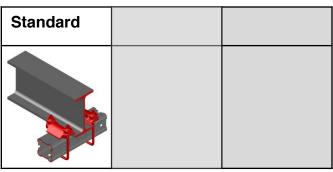
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads



Page 3/4

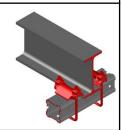
Data version 1.3 I Date 12.2016

MI-DGC 90 Base Material Connector - Steel

Loading case: Standard

Connector incl. all associated

components

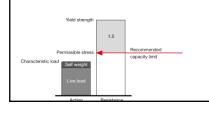

BOM:

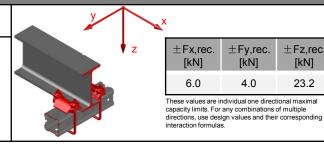
MI-DGC 90 233860

Associated MI System girders (channels) 304799 MI-90 6m 304798

Combinations covered by loading case

Connector used for horizontal connection of MI-90 or MIQ-90 to the flanges of structural steel profiles. Flange thickness 3-36mm.

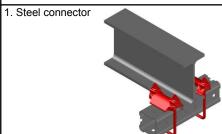

 \pm Fz,rec.


[kN]

23.2


Recommended loading capacity - simplified for most common applications

Method



Design loading capacity - 3D Method

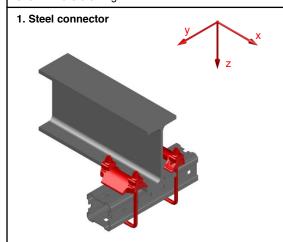
Limiting components of capacity evaluated in following tables:

Page 4/4

MI-DGC 90 Base Material **Connector - Steel**

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Standard	

Design loading capacity - 3D

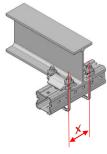
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

valid only for pairwise use

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
8.93	8.93	6.09	6.09	34.80	34.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.76	1.76	17.4*x	17.4*x	3.04*x	3.04*x


Interaction:

for tension forces

$$\frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} \le 1$$

for shear forces

$$\sqrt{\left(\frac{F_{x.Ed}}{F_{x.Rd}}\right)^2 + \left(\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}}\right)^2} \leq 1$$

with x [m] = width of flange + 0,012m

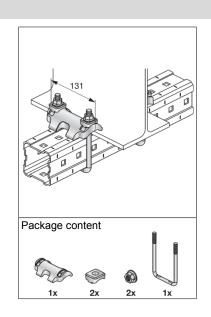
Page 1/4

MI-DGC 120 Base Material Connector - Steel

Designation	Item number
MI-DGC 120	233861

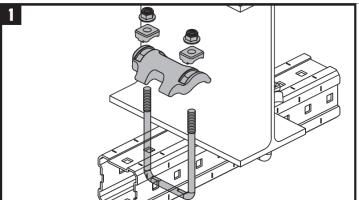
Corrosion protection:

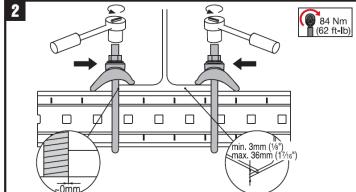
Clamp 55 µm - DIN EN ISO 1461 U-Bolt, Nut 45 µm - DIN EN ISO 1461


Weight:

1041.9 g incl. components

Submittal text:


Material properties:


Hilti Hot-dipped galvanized steel beam clamp, typically used to connect a horizontal MI-120 girder to a steel beam. Two U-bolts carry the girder and are connected to the clamp with saddles and nuts.

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Clamp:				
Steel EN-GJMB-350-10 - DIN EN 1562	2,			
Steel EN-GJMW-400-5 - DIN EN 1562	2			
Steel EN-GJMB-450-6 - EN 1562	$f_y = 270 \frac{N}{mm^2}$	$f_u = 450 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Bolt, Nut: Steel grade 8.8	$f_{v} = 640 \frac{N}{2}$	$f_{11} = 800 \frac{N}{2}$	$E = 210000 \frac{N}{2}$	$G = 80769 \frac{N}{2}$

Instruction For Use:

Page 2/4

MI-DGC 120 Base Material Connector - Steel

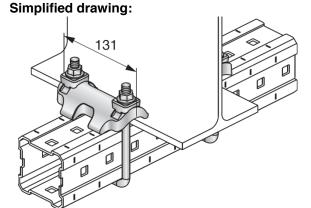
Possible loading cases		
Standard		

Design criteria used for loading capacity

Methodology:

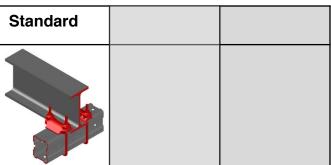
- Analytic calculation
- Hardware tests

Standards and codes:


_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

Software:

- Mathcad 15.0
- Microsoft Excel


Environmental conditions:

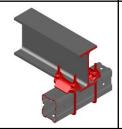
- indoors, outdoors
- static loads
- no fatigue loads

Page 3/4 Data version 1.3 I Date 12.2016

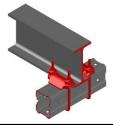
MI-DGC 120 Base Material Connector - Steel

Loading case: Standard

Combinations covered by loading case


BOM:

Connector incl. all associated components

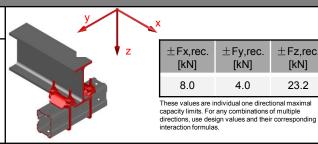

MI-DGC 120 233861

Associated MI System girders (channels) MI-120 3m 304800

MI-120 6m 304801

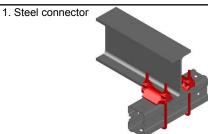
Connector used for horizontal connection of MI-120 to the flanges of structural steel profiles. Flange thickness 3-36mm.


 \pm Fz,rec.


[kN]

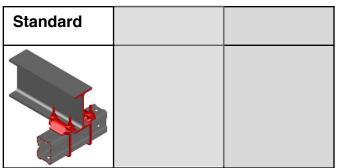
23.2

Recommended loading capacity - simplified for most common applications


Method

Design loading capacity - 3D Method

Limiting components of capacity evaluated in following tables:

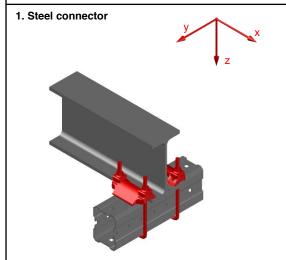


Page 4/4

MI-DGC 120 Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

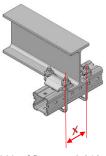
2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

valid only for pairwise use

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
8.93	8.93	6.09	6.09	34.80	34.80
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.76	1.76	17.4*x	17.4*x	3.04*x	3.04*x


Interaction:

for tension forces

$$\frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} \leq 1$$

for shear forces

$$\sqrt{\left(\frac{F_{x,Ed}}{F_{x,Rd}}\right)^2 + \left(\frac{F_{y,Ed}}{F_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}}\right)^2} \leq 1$$

with x [m] = width of flange + 0,012m

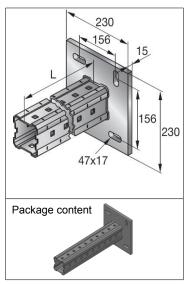
Page 1/4

Data version 1.3 I Date 12.2016

MIC-C90-D-500-2000 Bracket - Concrete

Designation	Item number
MIC-C90-D- 500	267789
MIC-C90-D- 750	267790
MIC-C90-D-1000	267791
MIC-C90-D-1500	267792
MIC-C90-D-2000	267793

Corrosion protection:


Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

MIC-C90-D- 500	10595g
MIC-C90-D- 750	12952g
MIC-C90-D-1000	15310g
MIC-C90-D-1500	20025g
MIC-C90-D-2000	24740g

Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Designation	L[mm]
MIC-C90-D- 500	500
MIC-C90-D- 750	750
MIC-C90-D-1000	1000
MIC-C90-D-1500	1500
MIC-C90-D-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547.				
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging

Respect IFU from the used anchor

Page 2/4

MIC-C90-D-500-2000 Bracket - Concrete

Possible loadii	ng cases	
Standard		

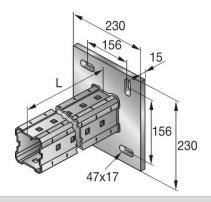
Design criteria used for loading capacity

Methodology:

Analytic calculation

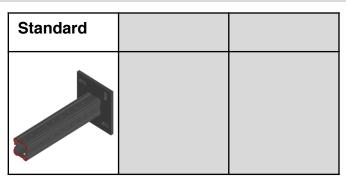
Standards and codes:

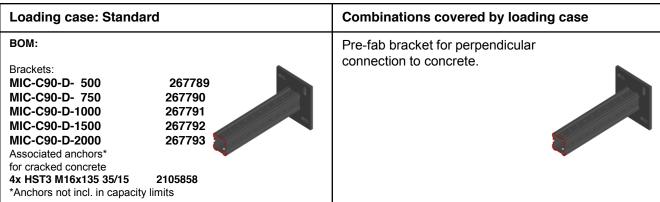
EN 1990	Basics of structural design	03.2003
EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
	 densities, self-weight, imposed loads for buildings 	03.2012
EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
	rules and rules for buildings	03.2012
EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
	Supplementary rules for cold-formed members and sheeting	09.2010
EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
	structural elements	06.2012
EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
	of joints	03.2012
	EN 1991-1-1 EN 1993-1-1 EN 1993-1-3	EN 1991-1-1 Eurocode 1: Actions on structures —Part 1-1: General actions — densities, self-weight, imposed loads for buildings EN 1993-1-1 Eurocode 3: Design of steel structures —Part 1-1: General rules and rules for buildings EN 1993-1-3 Eurocode 3: Design of steel structures —Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting EN 1993-1-5 Eurocode 3: Design of steel structures —Part 1-5:Plated structural elements EN 1993-1-8 Eurocode 3: Design of steel structures —Part 1-8: Design

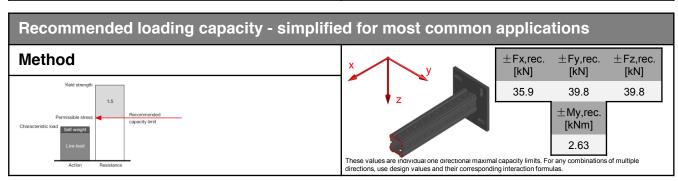

Software:

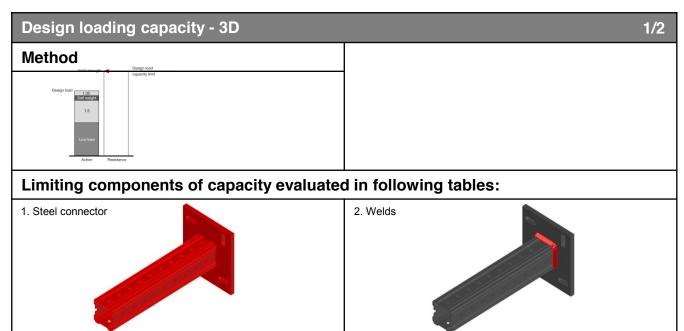
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

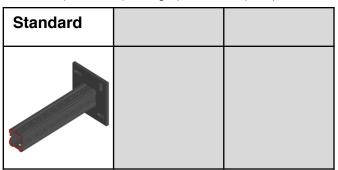

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:




Page 3/4

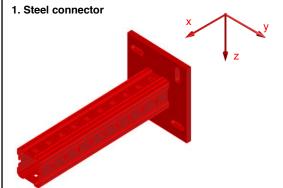
MIC-C90-D-500-2000 Bracket - Concrete



MIC-C90-D-500-2000 Bracket - Concrete

Conditions of the loading capacity tables:

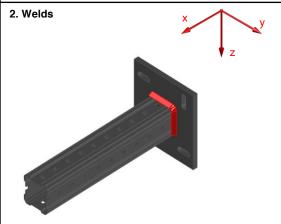
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Page 4/4

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm..

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
53.91	101.50	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	3.95	3.95	3.95	3.95

includes cross section resistance of steel base plate and channel

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

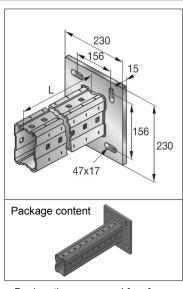
Page 1/4

Data version 1.3 I Date 12.2016

MIC-C120-D-500-2000 Bracket - Concrete

Designation	Item number
MIC-C120-D- 500	270468
MIC-C120-D- 750	270469
MIC-C120-D-1000	270470
MIC-C120-D-1500	270471
MIC-C120-D-2000	270472

Corrosion protection:


Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

MIC-C120-D- 500	12180g
MIC-C120-D- 750	15210g
MIC-C120-D-1000	18480g
MIC-C120-D-1500	24780g
MIC-C120-D-2000	31080g

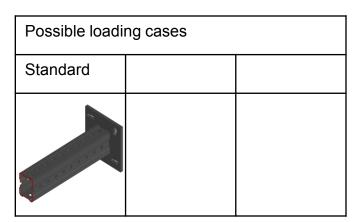
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to concrete. Four oblong anchor holes enable fine tuning of baseplate position, and girder is welded on the baseplate.

Designation	L[mn
MIC-C120-D- 500	500
MIC-C120-D- 750	750
MIC-C120-D-1000	1000
MIC-C120-D-1500	1500
MIC-C120-D-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547,	6 005 ^N	5 000 N	5 040000 ^N	O 00700 N
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:


No IFU attached to the packaging

Respect IFU from the used anchor

Page 2/4

Data version 1.3 I Date 12.2016

MIC-C120-D-500-2000 Bracket - Concrete

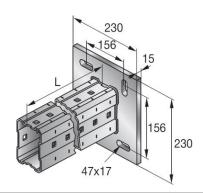
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

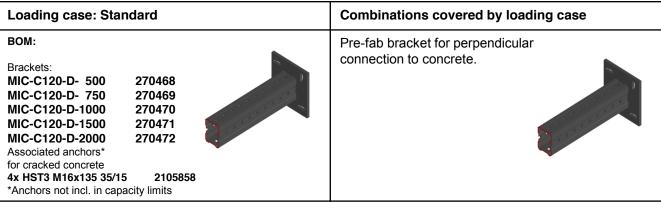
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

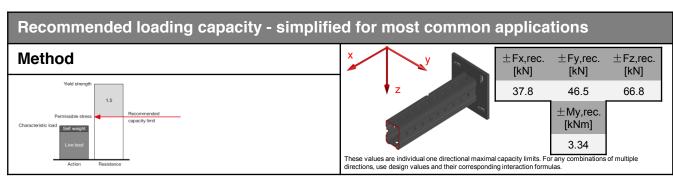

Software:

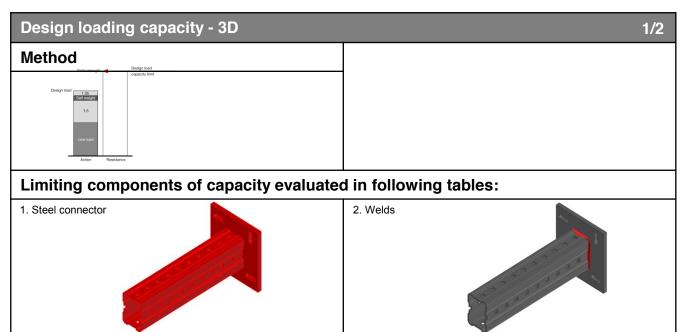
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

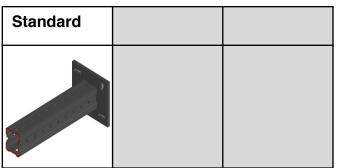
- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:




Page 3/4

MIC-C120-D-500-2000 Bracket - Concrete

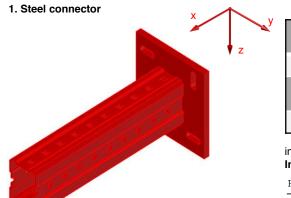


Page 4/4

MIC-C120-D-500-2000 Bracket - Concrete

Conditions of the loading capacity tables:

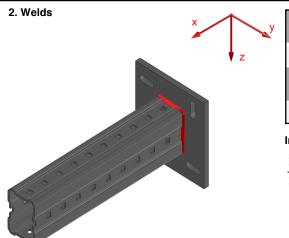
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm..

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
56.74	132.97	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	5.01	5.01	4.13	4.13

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Page 1/6

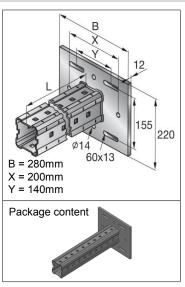
MIC-S90-A-500-2000 Bracket - Steel

Designation	Item number
MIC-S90-A- 500	267774
MIC-S90-A- 750	267775
MIC-S90-A-1000	267776
MIC-S90-A-1500	267777
MIC-S90-A-2000	267778

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

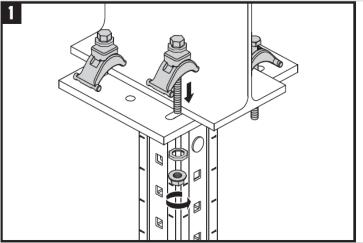

MIC-S90-A- 500	10175g
MIC-S90-A- 750	12480g
MIC-S90-A-1000	14890g
MIC-S90-A-1500	19605g
MIC-S90-A-2000	24320g

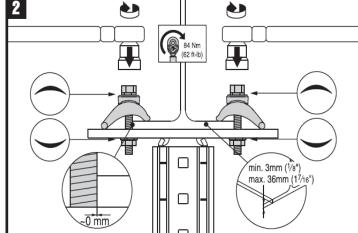
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

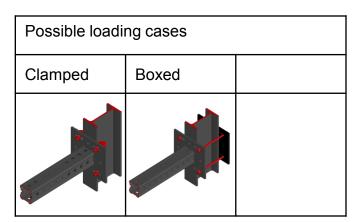



Designation	L[mm]
MIC-S90-A- 500	500
MIC-S90-A- 750	750
MIC-S90-A-1000	1000
MIC-S90-A-1500	1500
MIC-S90-A-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547,				
S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 2/6

Data version 1.3 I Date 12.2016

MIC-S90-A-500-2000 Bracket - Steel

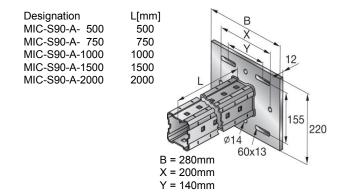
Design criteria used for loading capacity

Methodology:

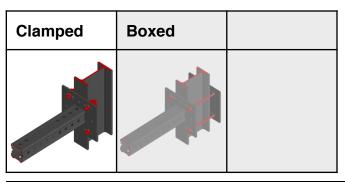
Analytic calculation

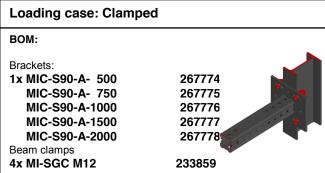
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

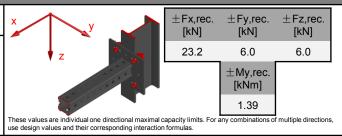

Environmental conditions:

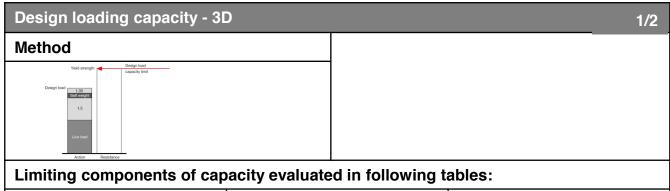

- indoors, outdoors
- static loads
- no fatigue loads

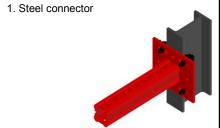
Simplified drawing:

MIC-S90-A-500-2000 Bracket - Steel

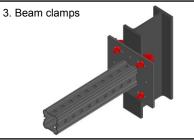

Combinations covered by loading case Pre-fab bracket for perpendicular


connection to structural steel profiles flanges.

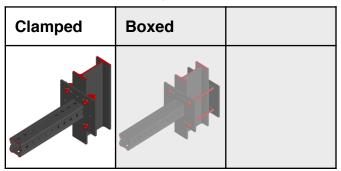

Flange width 75-165mm.


Recommended loading capacity - simplified for most common applications





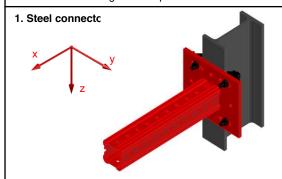
2. Welds



MIC-S90-A-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

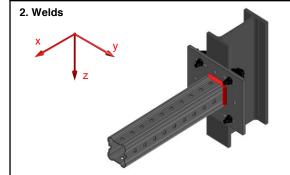
- Just for static loads
- No fatigue loads
- No low (< -10° C), no high (> +100° C) temperatures


Design loading capacity - 3D

2/2

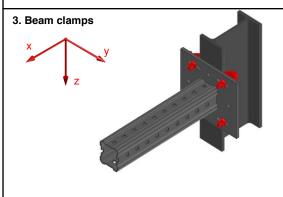
Page 4/6

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	2.36	2.36	2.45	2.45

includes cross section resistance of steel base plate and channel **Interaction:**

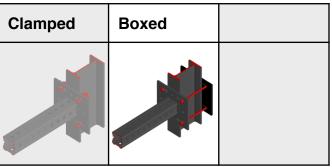

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

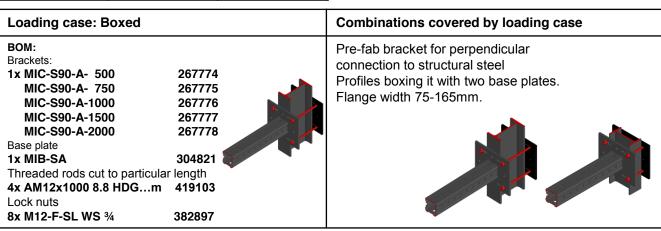
	+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
	285.11	285.11	116.39	116.39	116.39	116.39
	+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
I	9.54	9.54	5.84	5.84	5.84	5.84

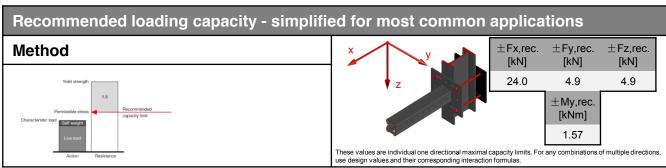
Interaction:

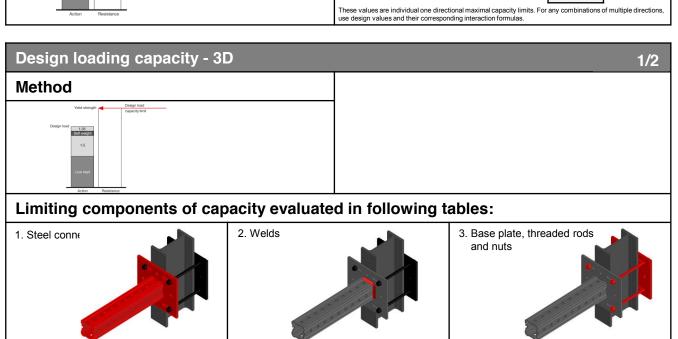
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.09	2.09	1.39	1.39

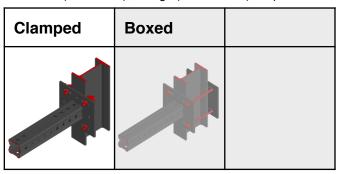

Interaction


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


Page 5/6


Data version 1.3 I Date 12.2016

MIC-S90-A-500-2000 Bracket - Steel

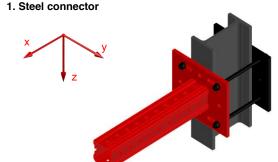


016 Page 6/6

MIC-S90-A-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

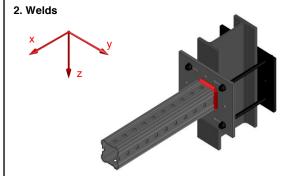
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

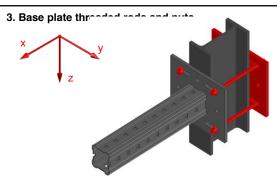
2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	2.36	2.36	2.45	2.45

includes cross section resistance of steel base plate and channel Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	11.65	11.65	7.77	7.77

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/6

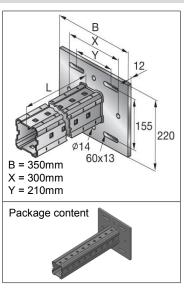
MIC-S90-B-500-2000 Bracket - Steel

Designation	Item number
MIC-S90-B- 500	267779
MIC-S90-B- 750	267780
MIC-S90-B-1000	267781
MIC-S90-B-1500	267782
MIC-S90-B-2000	267783

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

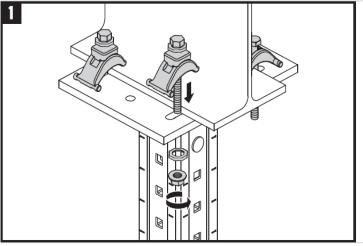

MIC-S90-B- 500	11625g
MIC-S90-B- 750	13983g
MIC-S90-B-1000	16340g
MIC-S90-B-1500	21055g
MIC-S90-B-2000	25770g

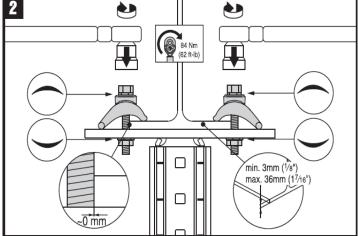
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

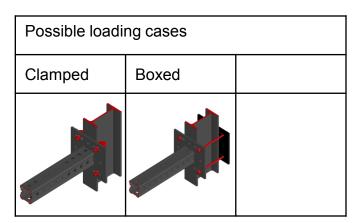



Designation	L[mm]
MIC-S90-B- 500	500
MIC-S90-B- 750	750
MIC-S90-B-1000	1000
MIC-S90-B-1500	1500
MIC-S90-B-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 2/6

Data version 1.3 I Date 12.2016

MIC-S90-B-500-2000 Bracket - Steel

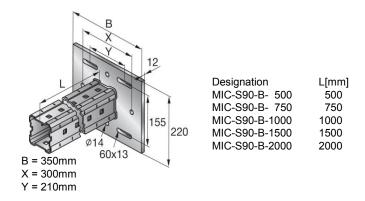
Design criteria used for loading capacity

Methodology:

Analytic calculation

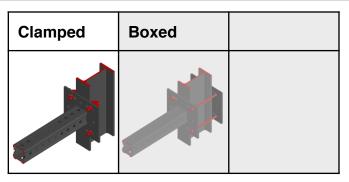
Standards and codes:

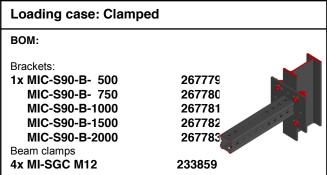
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

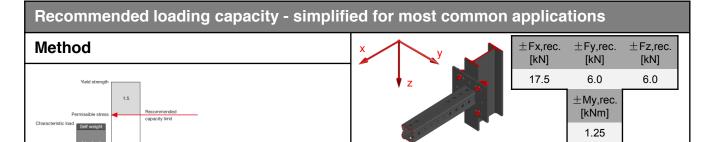
Environmental conditions:

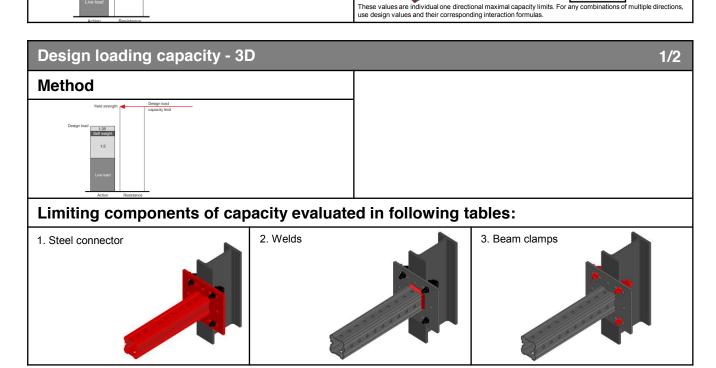

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:

Page 3/6

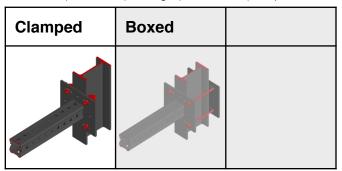
MIC-S90-B-500-2000 Bracket - Steel




Combinations covered by loading case Pre-fab bracket for perpendicular

connection to structural steel profiles flanges.

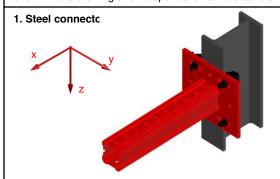
Flange width 165-235mm.



MIC-S90-B-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

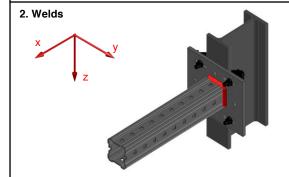
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

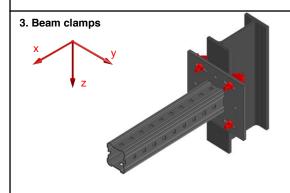
2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	1.87	1.87	2.14	2.14

includes cross section resistance of steel base plate and channel **Interaction:**

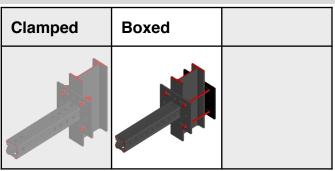

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

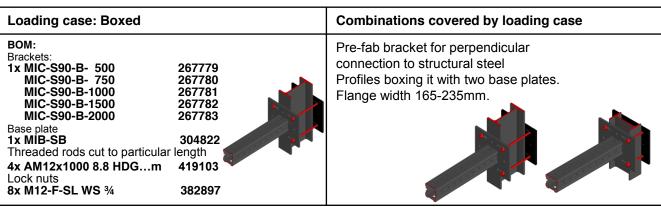
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

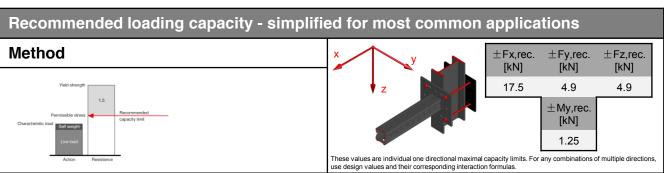
Interaction:

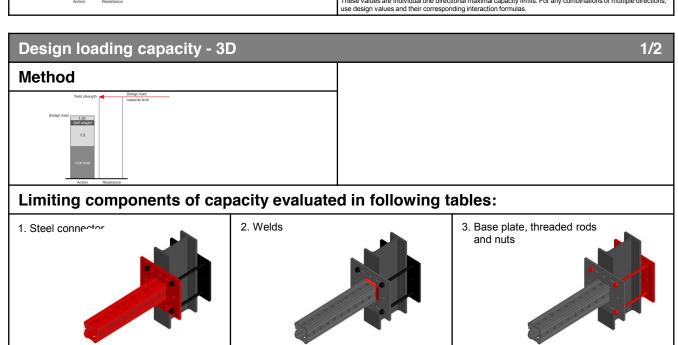
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.09	2.09	2.80	2.80

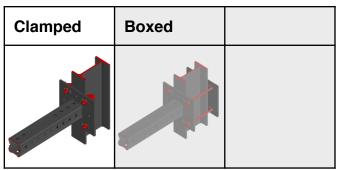

Interaction


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 5/6


Data version 1.3 I Date 12.2016

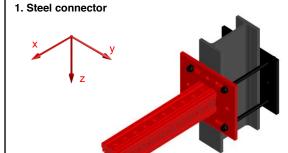
MIC-S90-B-500-2000 Bracket - Steel



MIC-S90-B-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

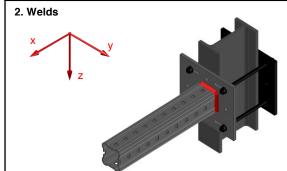
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



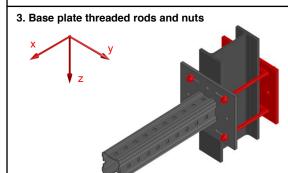
Design loading capacity - 3D

2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm..

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	1.87	1.87	2.14	2.14


includes cross section resistance of steel base plate and channel

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.88	0.88	11.65	11.65	15.64	15.64

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

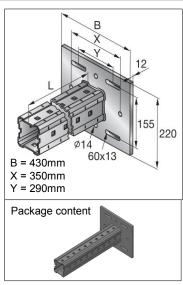
MIC-S90-C-500-2000 Bracket - Steel

Designation	Item number
MIC-S90-C- 500	267784
MIC-S90-C- 750	267785
MIC-S90-C-1000	267786
MIC-S90-C-1500	267787
MIC-S90-C-2000	267788

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

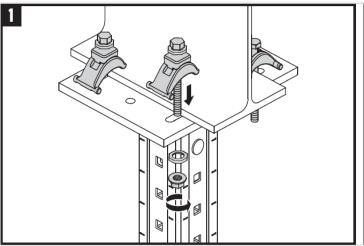

MIC-S90-C- 500	13285g
MIC-S90-C- 750	15643g
MIC-S90-C-1000	18000g
MIC-S90-C-1500	22715g
MIC-S90-C-2000	27430g

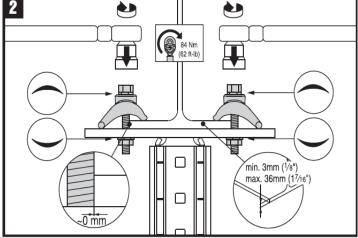
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

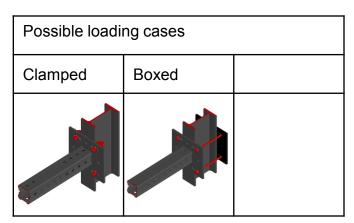



Designation	L[mm]
MIC-S90-C- 500	500
MIC-S90-C- 750	750
MIC-S90-C-1000	1000
MIC-S90-C-1500	1500
MIC-S90-C-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 1/6

Page 2/6

Data version 1.3 I Date 12.2016

MIC-S90-C-500-2000 Bracket - Steel

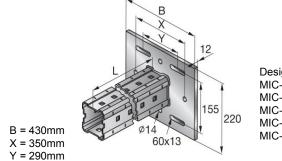
Design criteria used for loading capacity

Methodology:

Analytic calculation

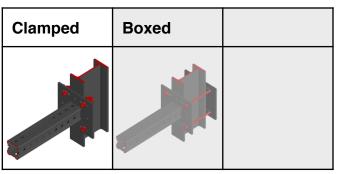
Standards and codes:

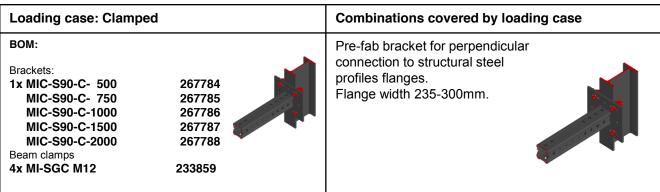
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

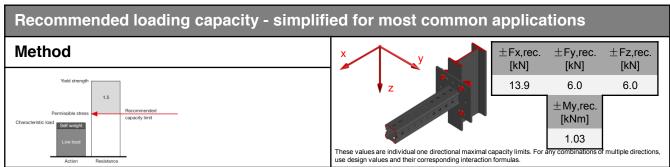

Software:

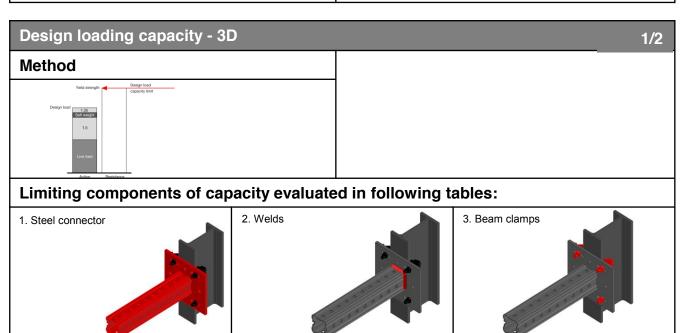
- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

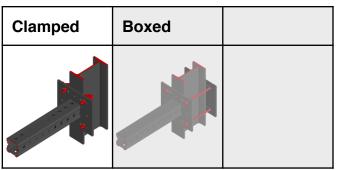

- indoors, outdoors
- static loads
- no fatigue loads


Simplified drawing:




Designation L[mm] MIC-S90-C- 500 500 MIC-S90-C- 750 750 MIC-S90-C-1000 1000 MIC-S90-C-1500 1500 MIC-S90-C-2000 2000

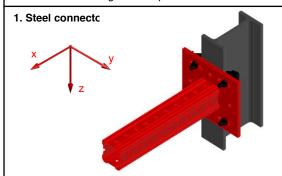
MIC-S90-C-500-2000 Bracket - Steel



MIC-S90-C-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

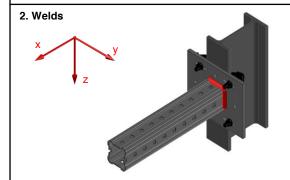
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

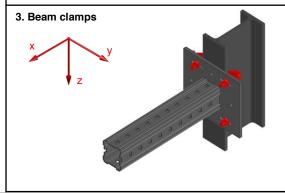
Page 4/6

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	1.54	1.54	1.94	1.94

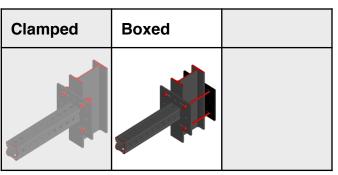
includes cross section resistance of steel base plate and channel Interaction:

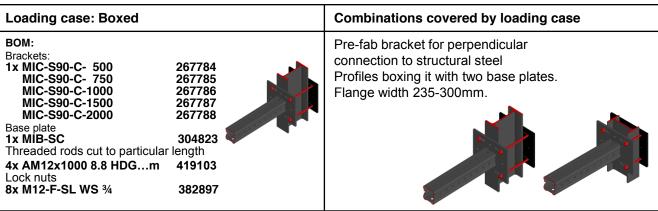

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

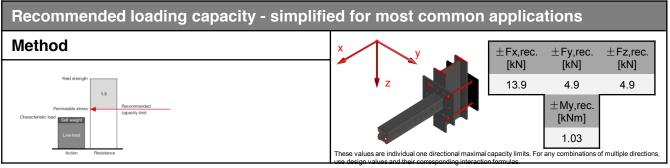
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

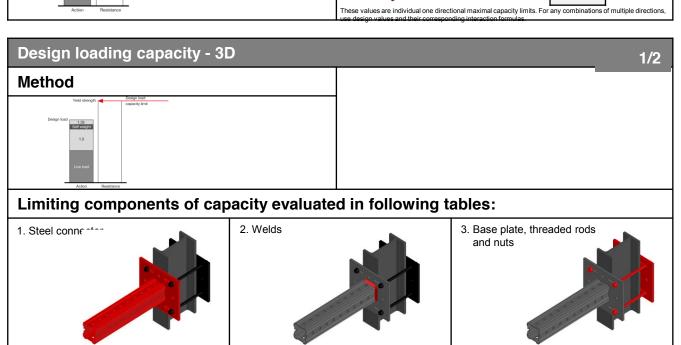
Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

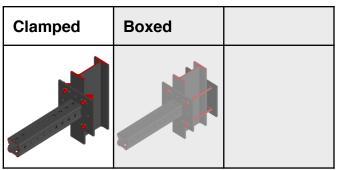

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.31	1.31	2.09	2.09	4.51	4.51


Interaction


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 5/6

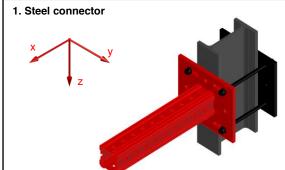
MIC-S90-C-500-2000 Bracket - Steel



MIC-S90-C-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

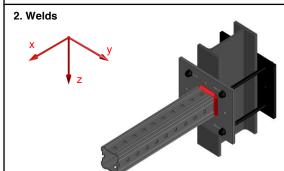
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

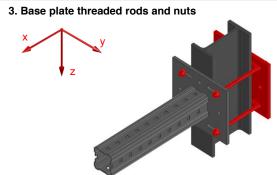
Page 6/6

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	59.70	59.70	59.70	59.70
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
5.19	5.19	1.54	1.54	1.94	1.94

includes cross section resistance of steel base plate and channel Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
285.11	285.11	116.39	116.39	116.39	116.39
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
9.54	9.54	5.84	5.84	5.84	5.84

Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	29.47	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	11.65	11.65	25.15	25.15

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Page 1/6

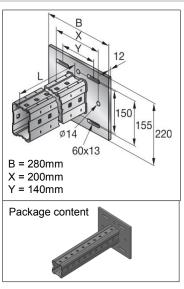
MIC-S120-A-500-2000 Bracket - Steel

Designation	Item number
MIC-S120-A- 500	267794
MIC-S120-A- 750	267795
MIC-S120-A-1000	267796
MIC-S120-A-1500	267797
MIC-S120-A-2000	267798

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

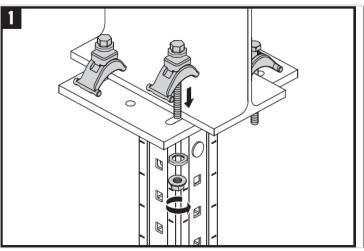

MIC-S120-A- 500	11760g
MIC-S120-A- 750	14910g
MIC-S120-A-1000	18060g
MIC-S120-A-1500	24360g
MIC-S120-A-2000	30660g

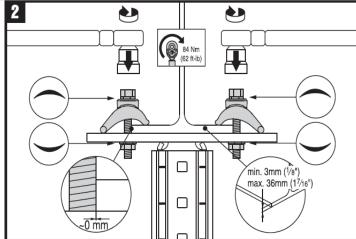
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

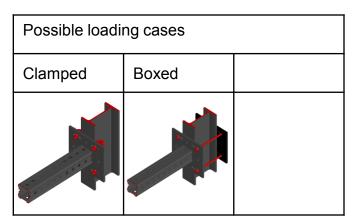



Designation	L[mm]
MIC-S120-A- 500	500
MIC-S120-A- 750	750
MIC-S120-A-1000	1000
MIC-S120-A-1500	1500
MIC-S120-A-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 2/6

Data version 1.3 I Date 12.2016

MIC-S120-A-500-2000 Bracket - Steel

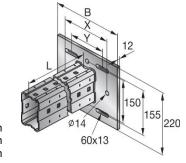
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

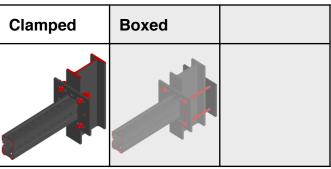
 Designation
 L[mm]

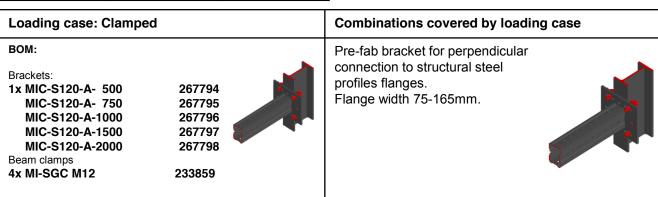
 MIC-S120-A- 500
 500

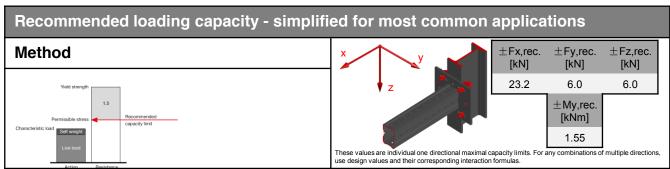
 MIC-S120-A- 750
 750

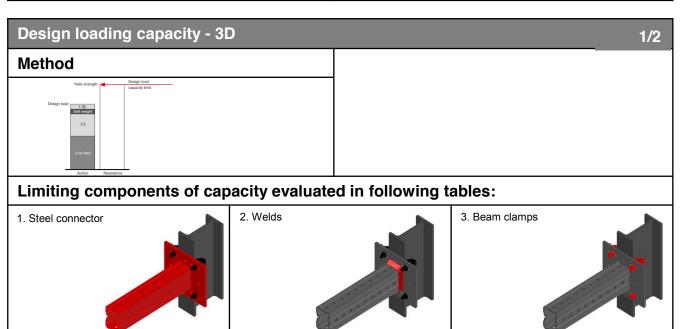
 MIC-S120-A-1000
 1000

 MIC-S120-A-1500
 1500

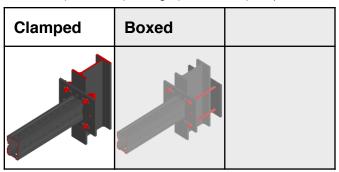

 MIC-S120-A-2000
 2000


B = 280mm X = 200mm Y = 140mm


Page 3/6


Data version 1.3 I Date 12.2016

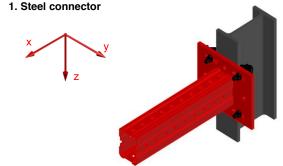
MIC-S120-A-500-2000 Bracket - Steel



MIC-S120-A-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

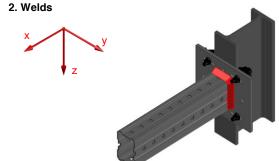
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

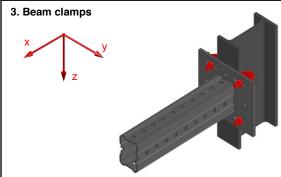
2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	3.01	3.01	2.50	2.50

includes cross section resistance of steel base plate and channel Interaction:

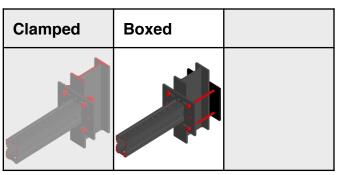

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

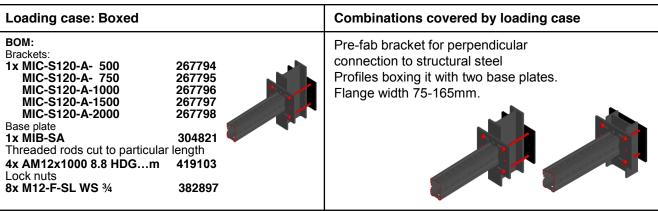
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

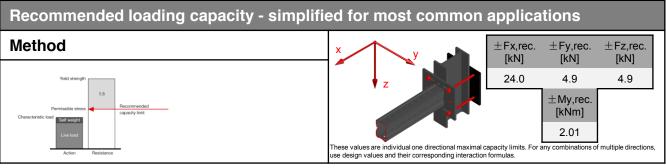
Interaction:

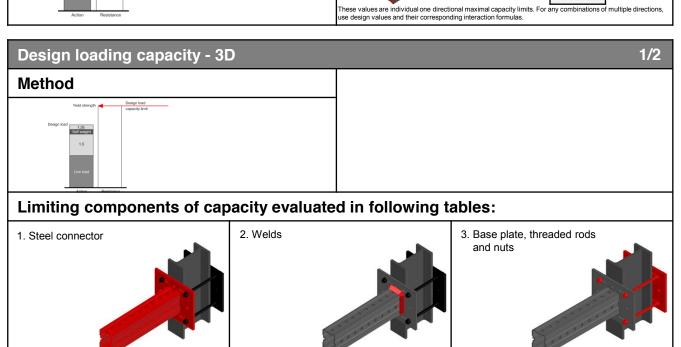
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.33	2.33	1.39	1.39

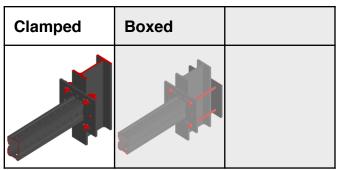

Interaction


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


Installation Technical Manual - Technical Data - MI system


Page 5/6

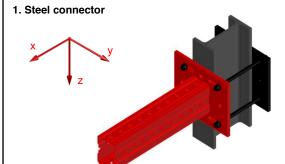
MIC-S120-A-500-2000 Bracket - Steel



MIC-S120-A-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

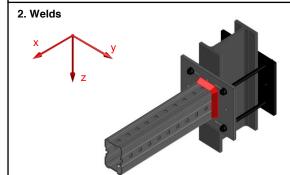
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Page 6/6

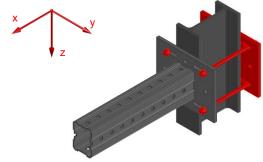
Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.47	81.05	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	3.01	3.01	2.50	2.50

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	13.01	13.01	7.77	7.77

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Installation Technical Manual - Technical Data - MI system

Page 1/6

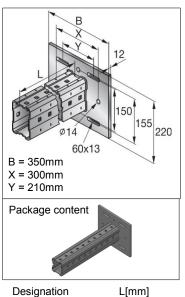
MIC-S120-B-500-2000 Bracket - Steel

Designation	Item number
MIC-S120-B- 500	267799
MIC-S120-B- 750	270459
MIC-S120-B-1000	270460
MIC-S120-B-1500	270461
MIC-S120-B-2000	270462

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

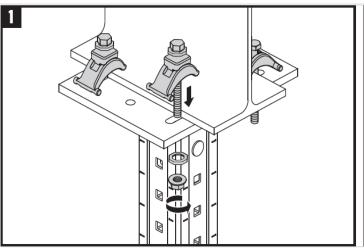

MIC-S120-B- 500	12960g
MIC-S120-B- 750	16360g
MIC-S120-B-1000	19510g
MIC-S120-B-1500	25810g
MIC-S120-B-2000	32110g

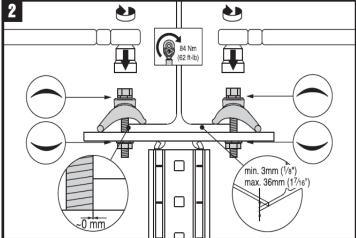
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

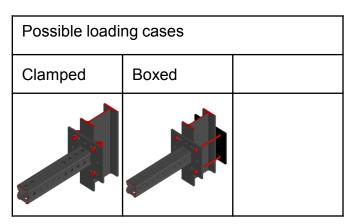



Designation	L[mm
MIC-S120-B- 500	500
MIC-S120-B- 750	750
MIC-S120-B-1000	1000
MIC-S120-B-1500	1500
MIC-S120-B-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket:				
DD11 MOD - HN 547,	N	N	N	N
S235JR - DIN EN 10025;	$f_{v} = 235 \frac{r}{mm^{2}}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	$G = 80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 2/6

Data version 1.3 I Date 12.2016

MIC-S120-B-500-2000 Bracket - Steel

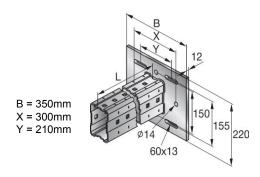
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

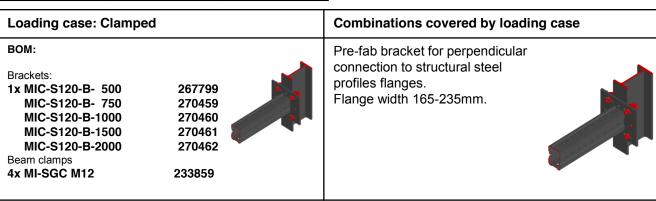
 Designation
 L[mm]

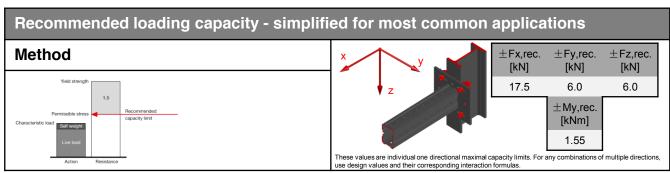
 MIC-S120-B- 500
 500

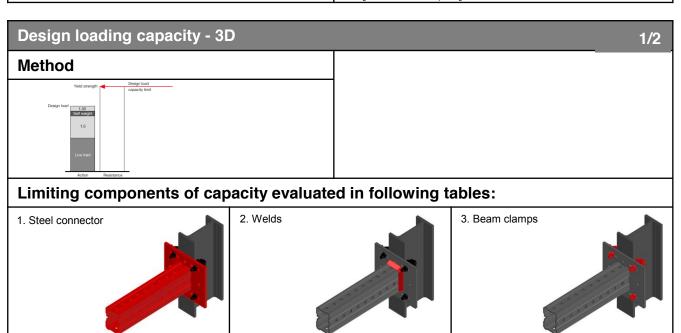
 MIC-S120-B- 750
 750

 MIC-S120-B-1000
 1000

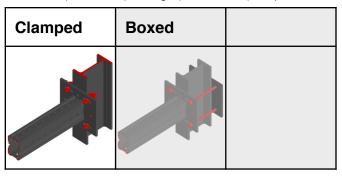
 MIC-S120-B-1500
 1500


 MIC-S120-B-2000
 2000


Page 3/6


Data version 1.3 I Date 12.2016

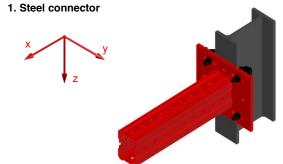
MIC-S120-B-500-2000 Bracket - Steel



MIC-S120-B-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

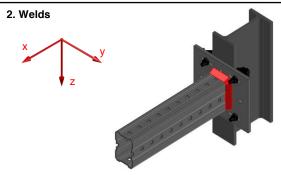
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

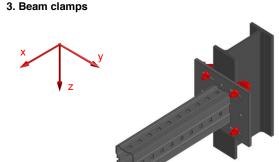
2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	2.32	2.32	2.15	2.15

includes cross section resistance of steel base $\overline{\textbf{p}}$ late and channel Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

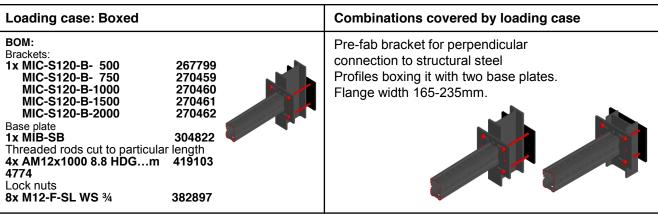
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

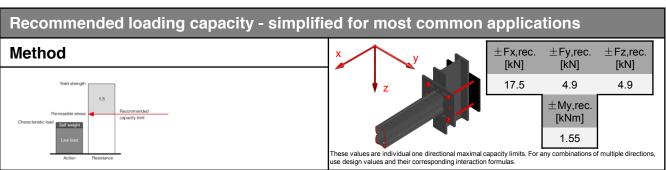
Interaction:

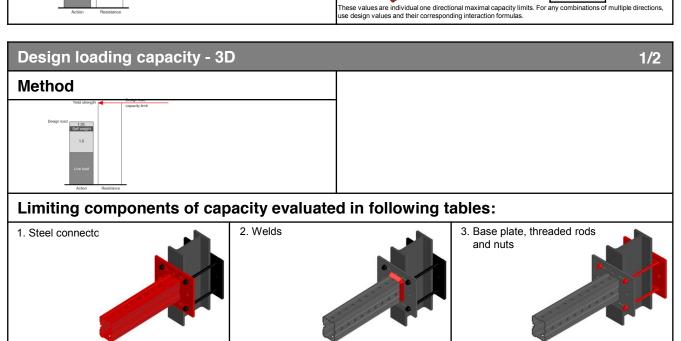
$$\frac{F_{X,Ed}}{F_{X,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{X,Ed}}{M_{X,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.33	2.33	2.80	2.80

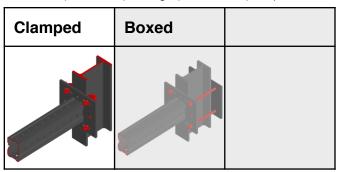
Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{v.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{v.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


Page 5/6


Data version 1.3 I Date 12.2016

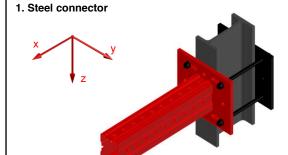
MIC-S120-B-500-2000 Bracket - Steel



MIC-S120-B-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

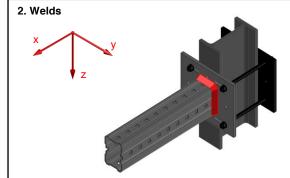
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



Design loading capacity - 3D

2/2

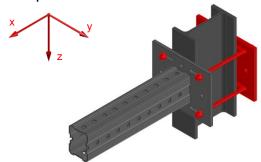
Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.26	57.84	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	2.32	2.32	2.15	2.15

includes cross section resistance of steel base plate and channel Interaction:


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.88	0.88	13.01	13.01	15.64	15.64

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

Page 1/6

Data version 1.3 I Date 12.2016

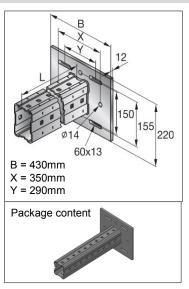
MIC-S120-C-500-2000 Bracket - Steel

Designation	Item number
MIC-S120-C- 500	270463
MIC-S120-C- 750	270464
MIC-S120-C-1000	270465
MIC-S120-C-1500	270466
MIC-S120-C-2000	270467

Corrosion protection:

Hot dipped galvanized as per ASTM 123, thickness 75 microns

Weight:

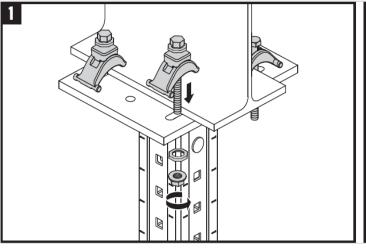

MIC-S120-C- 500	14870g
MIC-S120-C- 750	18020g
MIC-S120-C-1000	21170g
MIC-S120-C-1500	27470g
MIC-S120-C-2000	33770g

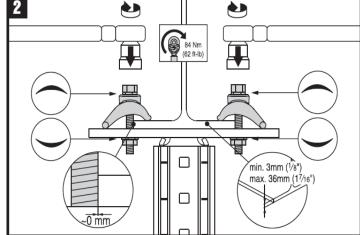
Submittal text:

Hilti Hot-dipped galvanized bracket used as fixed to structural steel profiles. The fixation could be done by two different principles.

First principle is clamping, using four beam clams clamped on flange of the structural steel profile.

Second principle is boxing using integrated baseplate of the bracket and the same sized base plate on the other side of the structural steel profile being tighten by four threaded rods around the structural steel profile.

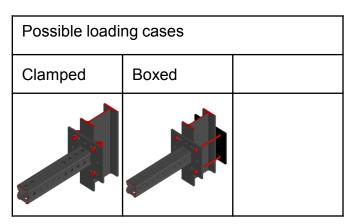



Designation	L[mm]
MIC-S120-C- 500	500
MIC-S120-C- 750	750
MIC-S120-C-1000	1000
MIC-S120-C-1500	1500
MIC-S120-C-2000	2000

Material properties:				
Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Bracket: DD11 MOD - HN 547, S235JR - DIN EN 10025;	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$

Instruction For Use:

No IFU attached to the packaging



Page 2/6

Data version 1.3 I Date 12.2016

MIC-S120-C-500-2000 Bracket - Steel

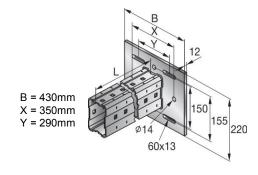
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- · Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

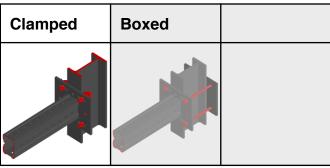
Simplified drawing:

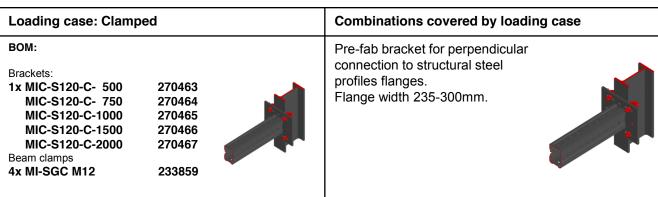
 Designation
 L[mm]

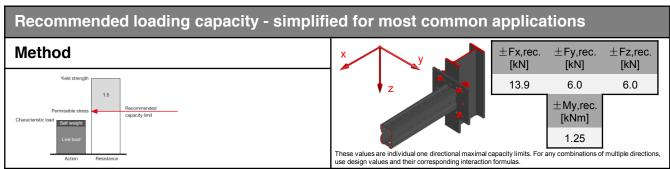
 MIC-S120-C- 500
 500

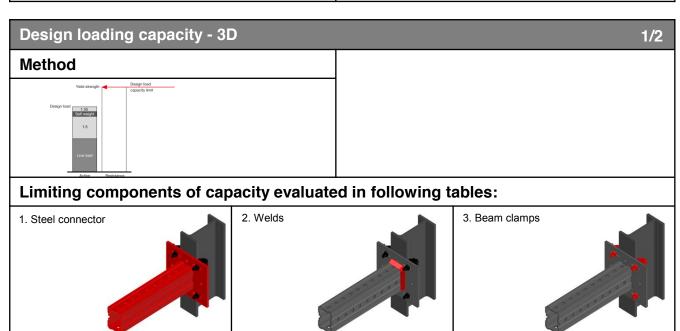
 MIC-S120-C- 750
 750

 MIC-S120-C-1000
 1000

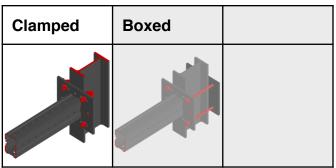

 MIC-S120-C-1500
 1500


 MIC-S120-C-2000
 2000


Page 3/6


Data version 1.3 I Date 12.2016

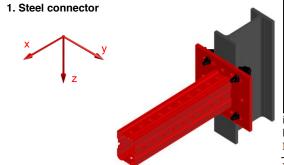
MIC-S120-C-500-2000 Bracket - Steel



MIC-S120-C-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

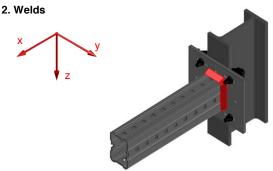
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Page 4/6

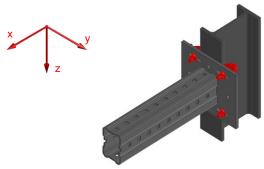
Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	1.88	1.88	1.94	1.94

includes cross section resistance of steel base plate and channel Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

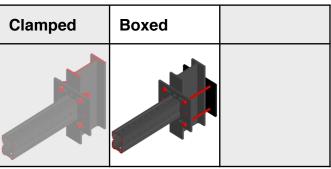


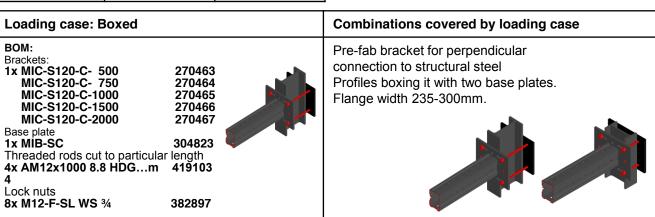
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

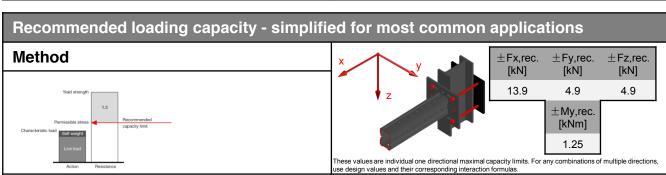
Interaction

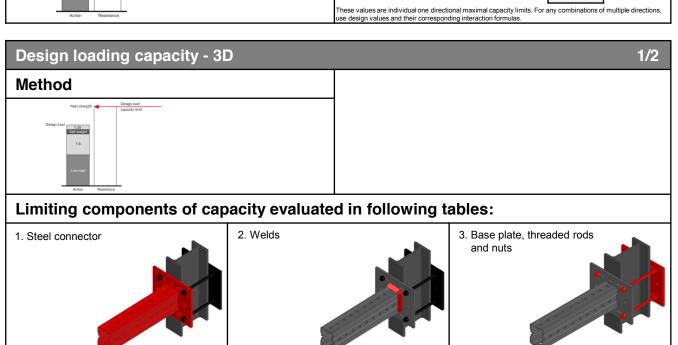
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.31	1.31	2.33	2.33	4.51	4.51

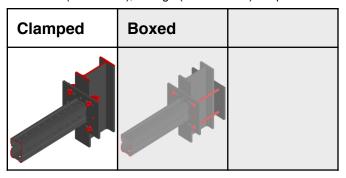

Interaction


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$


Page 5/6


Data version 1.3 I Date 12.2016

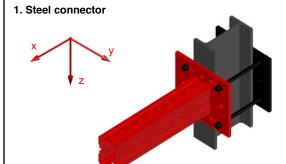
MIC-S120-C-500-2000 Bracket - Steel



MIC-S120-C-500-2000 Bracket - Steel

Conditions of the loading capacity tables:

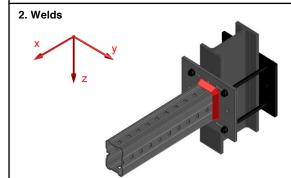
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



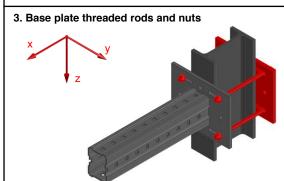
Design loading capacity - 3D

2/2

Summary of design loads*


NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing and independent from the cantilever length. So they are valid equally for L=500, 750, 1000, 1500, 2000mm...

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
20.91	45.28	69.74	69.74	100.13	100.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
8.54	8.54	1.88	1.88	1.94	1.94


includes cross section resistance of steel base plate and channel

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
346.20	346.20	116.39	116.39	166.28	166.28
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
13.34	13.34	7.98	7.98	8.35	8.35

$$\frac{F_{X.Ed}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	29.47	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	13.01	13.01	25.15	25.15

$$\begin{aligned} & \frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1 \end{aligned}$$

Terms of common cooperation / Legal disclaimer

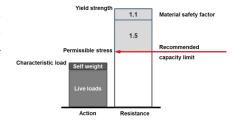
The product loading capacities published in these Technical Data Sheets are only valid for the mentioned codes or technical data generation methods and the defined application conditions (e.g. ambient temperature load capacity not valid in case of fire, data not valid in support structures when mixed with third party products), assuming sufficient fastener, base material and building structure strength. Additional calculations, checks and releases by the responsible structural engineer might be needed to clarify the capacity of base material and building structure. Suitability of structures combining different products for specific applications needs to be verified by conducting a system design and calculation, using for example Hilti PROFIS software. In addition, it is crucial to fully respect the Instructions for Use and to assure clean, unaltered and undamaged state of all products at any time in order to achieve this loading capacity (e.g. misuse, modification, overload, corrosion). As products but also technical data generation methodologies evolve over time, technical data might change at any time without prior notice. We recommend to use the latest technical data sheets published by Hilti.

In any case the suitability of structures combining different products for specific applications need to be checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for any specific facility. This book only serves as an aid to interpret the suitability of structures combining different products for specific applications without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application. User must take all necessary and reasonable steps to prevent or limit damage. The suitability of structures combining different products for specific applications are only recommendations that need to be confirmed with a professional designer and/or structural engineers to ensure compliance with User` s specific jurisdiction and project requirements.

Content and overview of this manual

Product Designation		Item number	Page
MIQ System gir	rders (channels) -	section properties	
* 0 T C C C	MIQ-90-3m MIQ-90-6m	2119866 2119867	5
MIQ System an	igle connectors - I	oading capacity lin	nits
	MIQC-90-HS	2123880	7
	MIQC-90-HT	2123881	11
	MIQC-90-HT-V	2134818	15
	MIQC-90-L	2119868	19
	MIQC-90-MI	2140257	23
	MIQC-90-MI-V	2140258	27
99999	MIQC-90-E	2140259	31
	MIC-90-LH	2048107	37
MIC-U-MA		304806	43
MIQ System co	ncrete connectors	s - loading capacity	/ limits
	MIQC-C90-U	2134819	49

Content and overview of this manual


Product Designation		Item number	Page					
MIQ System c	oncrete connectors	- loading capacit	y limits					
	MIQC-C90	2120144	53					
	MIC-CU-MA	304828	57					
MIQ System s	MIQ System steel connectors - loading capacity limits							
	MIQC-S90-AC	2120270	63					
	MIQC-S90-BC	2120272	69					
	MIQC-S90-AP	2120271	75					
	MIQC-S90-BP	2120273	81					
	MIC-SA-MA MIC-SB-MA MIC-SC-MA	304815 304816 304817	87 95 103					
MIQ System a	ccessories - loadin	g capacity limits						
	MIQA-T M12	2120142	111					
	MIQC-M10 MIQC-M12 MIQC-M16	2120274 2120275 2120276	112 112 112					
MIQ Elevator	connectors							
	MIC-C90-EDB	2149279	113					
	MIC-C120-EDB	2149420	119					

Data version 1.0 I Date 07.2016 I Page 1/1

MIQ System - Girders (Channels)

Designation	Item number
MIQ-90-3m	2119866
MIQ-90-6m	2119867

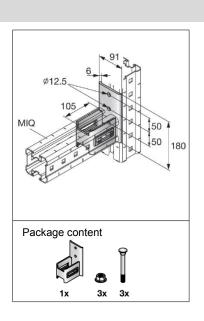
			Action Resistance
Technical data			MIQ-90
For girder MI / cross section including torsion			Y
Cross-sectional area	Α	[mm ²]	1093.51
Channel weight		[kg/m]	8.58
Wall thickness		[mm]	2.5
Material			
yield strength	$f_{y,k}$	[N/mm ²]	275
permissible stress*	$\sigma_{\sf rec}$	[N/mm ²]	178.6
E-module		[N/mm ²]	210000
Shear-modulus		[N/mm ²]	81000
Surface			
hot dip galvanized		[µm]	65
Cross-section values Y-axis			
Axis of gravity A	e ₁	[mm]	45
Axis of gravity B	e_2	[mm]	45
moment of inertia	l _y	[cm ⁴]	121.65
Section modulus A	W_{y1}	[cm ³]	27.03
Section modulus B	W_{y2}	[cm ³]	27.03
Radius of gyration	i _y	[cm]	3.34
Permissible moment	M_{y}	[Nm]	4.83
Cross-section values Z-axis			
moment of inertia	l _z	[cm ⁴]	101.29
Section modulus	W_z	[cm ³]	22.51
Radius of gyration	i _z	[cm]	3.04
Data to the torsion			
torsional moment of inertia	It	[mm ⁴]	54.35
torsional section modulus	W_t	[mm³]	9.1

Page 1/4

MIQC-90-HS angle connector

Item number
2123880

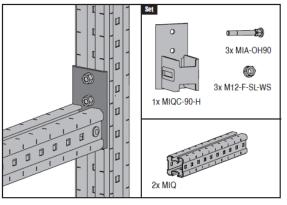
Corrosion protection:

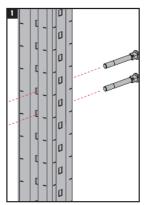

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

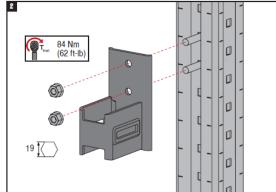
Weight:

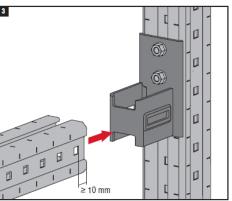
1457.1g connector (1802g incl. accessories)

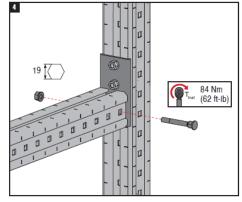
Submittal text:

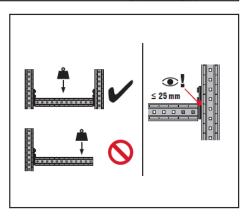

Hilti angle, 90°, MIQ system, MIQC-90-HS, Hot dipped galvanized, angle typically used for connection of two perpendicular Hilti MIQ girders, angle connector with two hole base plate fitted for connection on surface of other MIQ girder through bolted by two MIA-OH 90 (included in the pack) from back side of the girder and secured by two self locking nuts. The connected girder is stuck on connectivity part of the angle and through bolted by 3 pieces of MIA-OH and self locking nut in the first hole closest to the end of the girder, material weight 1802 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/4

Data version 1.2 I Date 11.2016

MIQC-90-HS angle connector

Possible loading cases				
Standard				

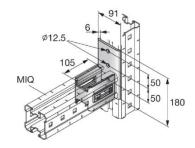
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

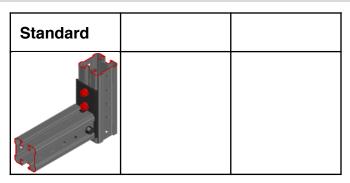
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

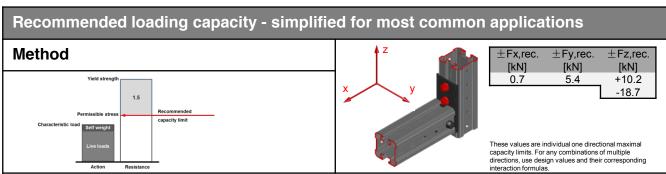

Software:

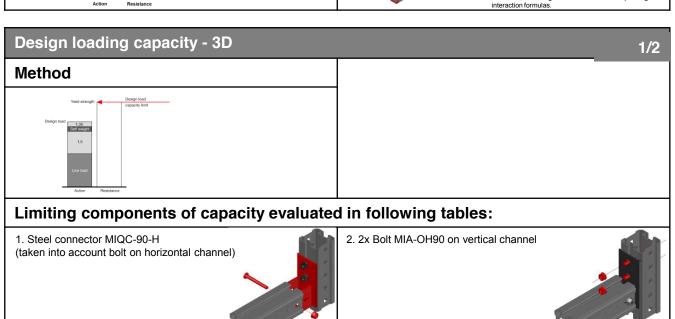
- Ansys 16.0
- Microsoft Excel

Environmental conditions:


- static loads
- no fatigue loads

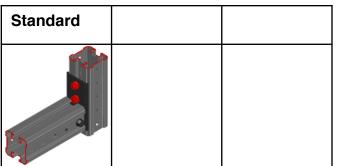
Simplified drawing:





MIQC-90-HS angle connector

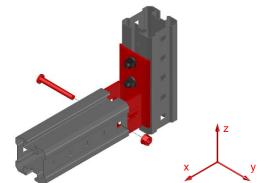
Loading case: Standard	Combinations covered by loading case	
BOM: Angle incl. all connectivity material 1x MIQC-90-HS 2123880	Connector used for fixing H-MIQ girder on grooved section of V-MIQ girder	



MIQC-90-HS angle connector

Conditions of the loading capacity tables:

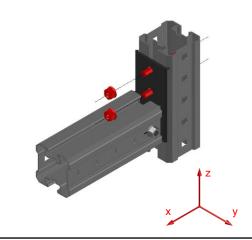
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector MIQC-90-H (taken into account bolt on horizontal channel and welds)

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
1.06	1.06	8.12	8.12	15.36	33.38
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.10	1.10	1.57	0.24	0.27	0.27

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq$$

2. 2x Bolt MIA-OH90 on vertical channel (NOTE: interaction is not necessary)

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
*	*	*	*	28.0	28.0
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.55	0.55	*	*	*	*

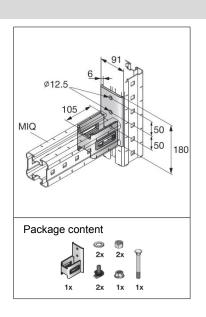
^{*} not decisive

Page 1/4

MIQC-90-HT angle connector

Designation	Item number
MIQC-90-HT angle connector	2123881

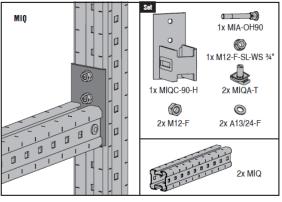
Corrosion protection:

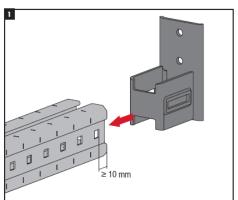

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

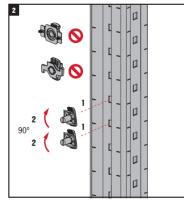
Weight:

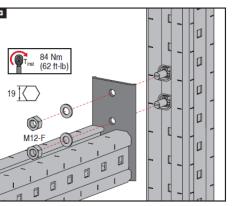
1457.1g connector (1732g incl. accessories)

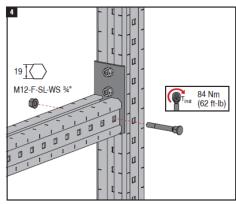
Submittal text:

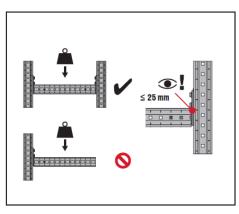

Hilti angle, 90°, MIQ system, MIQC-90-HT, hot dipped galvanized, angle typically used for connection of two perpendicular Hilti MIQ girders, angle connector with two hole base plate fitted for connection in groove of other MIQ girder with two t-bolts and self locking nuts (both included in the pack). The connected girder is slid onto connection interface of the angle and through bolted by 1 piece of MIA-OH and self locking nut (both included in the pack) in the first hole closest to the end of the gir der, material weight 1732 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/4

Data version 1.2 I Date 11.2016

MIQC-90-HT angle connector

Possible loadi	ng cases	
Standard		

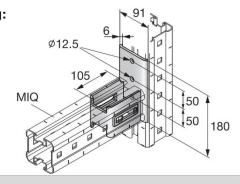
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

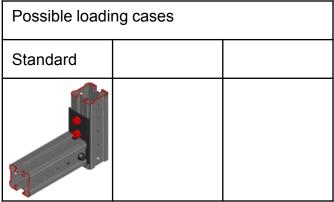
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

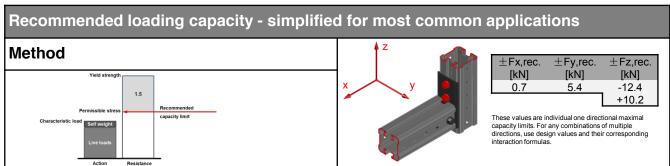

Software:

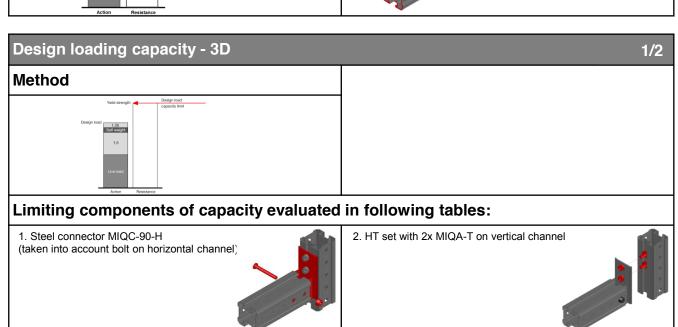
- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads


Simplified drawing:


Page 3/4


Data version 1.2 I Date 11.2016

MIQC-90-HT angle connector

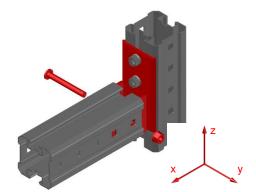
Loading case: Standard	Combinations covered by loading case
BOM: Angle incl. all connectivity material 1x MIQC-90-HT 2123881	Connector used for fixing H-MIQ girder on grooved section of V-MIQ girder

MIQC-90-HT angle connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Possible loading cases		
Standard		

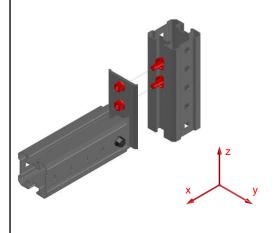

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector MIQC-90-H (taken into account bolt on horizontal channel and welds)



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.06	1.06	8.12	8.12	15.36	33.38
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.10	1.10	1.57	0.24	0.27	0.27

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. HT set with 2x MIQA-T on vertical channel (NOTE: interaction is not necessary)

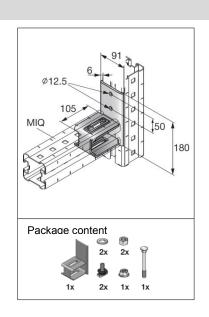
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
*	*	*	*	18.58	18.58
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
*	*	*	*	*	*

Page 1/4

MIQC-90-HT-V angle connector

Designation	Item number
MIQC-90-HT-V angle connector	2134818

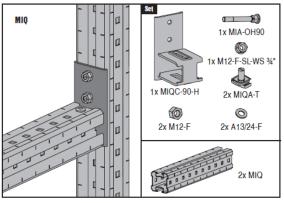
Corrosion protection:

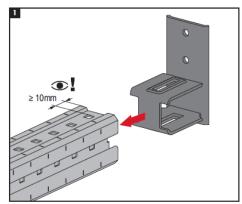

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

Weight:

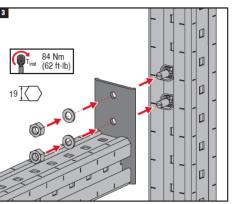
1730g

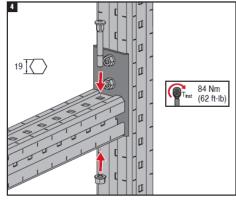
Submittal text:

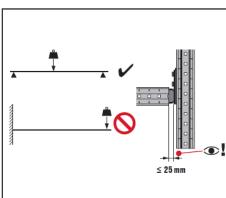

Hilti angle, 90°, MIQ system, MIQC-90-HT-V, hot dipped galvanized, angle typically used for connection of two perpendicular Hilti MIQ girders, angle connector with two hole base plate fitted for connection in groove of other MIQ girder with two t-bolts and self locking nuts (both included in the pack). The connected girder is slid onto connection interface of the angle and through bolted by 1 piece of MIA-OH and self locking nut (both included in the pack) in the first hole closest to the end of the girder, material weight 1732 grams incl. all connectivity material.



Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/4

Data version 1.2 I Date 11.2016

MIQC-90-HT-V angle connector

Possible loadi	ng cases	
Standard		

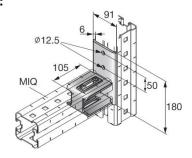
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

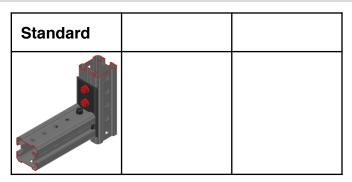
Standards and codes:

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

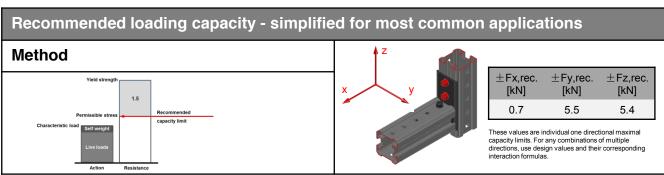

Software:

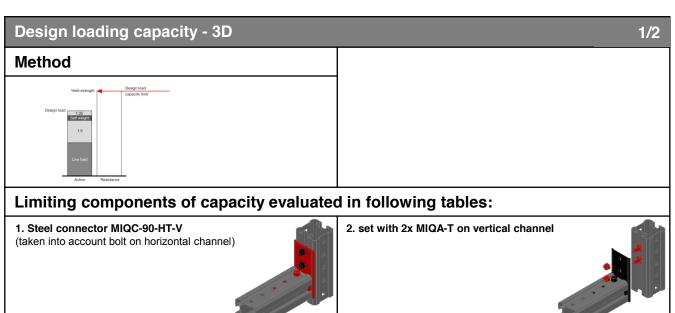
- Ansys 16.0
- Microsoft Excel

Environmental conditions:


- static loads
- no fatigue loads

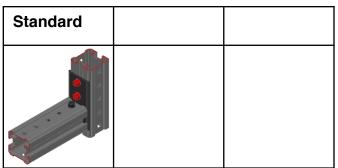
Simplified drawing:





MIQC-90-HT-V angle connector

Loading case: Standard	Combinations covered by loading case
BOM: Angle incl. all connectivity material MIQC-90-HT-V 2134818	Connector used for fixing H-MIQ girder open to side on grooved section of V-MIQ girder

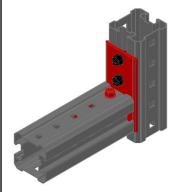


MIQC-90-HT-V angle connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

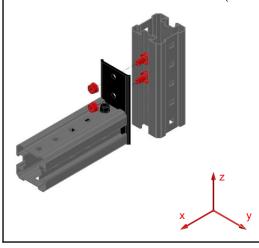
Design loading capacity - 3D


2/2

Page 4/4

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector MIQC-90-HT-V (taken into account bolt on horizontal channel)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.06	1.06	8.25	8.25	8.13	8.13
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.10	1.10	0.22	0.12	0.24	0.24

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Set with 2x MIQA-T on vertical channel (NOTE: interaction is not necessary)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
*	*	*	*	18.58	18.58
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
*	*	*	*	*	*

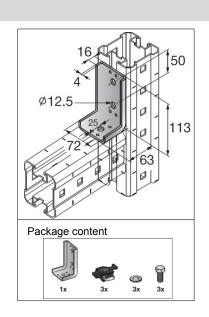
^{*} not decisive

Page 1/4

MIQC-90-L angle connector

Designation	Item number
MIQC-90-L angle connector	2119868

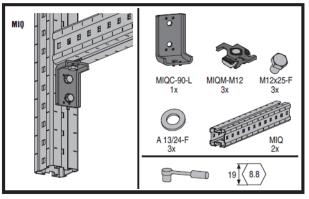
Corrosion protection:

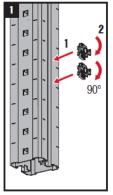

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

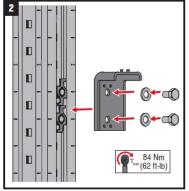
Weight:

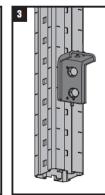
450g connector (648g incl. accessories)

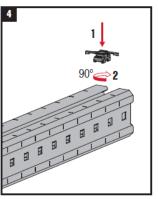
Submittal text:

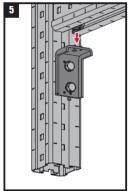

Hilti angle, 90°, MIQ system, MIQC-90-L, Hot dipped galvanized, angle typically used for connection of two perpendicular Hilti MIQ girders, angle connector with two hole base plate fitted for connection in groove of other MIQ girder with two wing nuts, washers and self locking nuts (both included in the pack) on one side and with one hole fixed the same way on the other side, material weight 648 grams incl. all connectivity material.

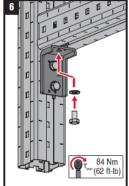


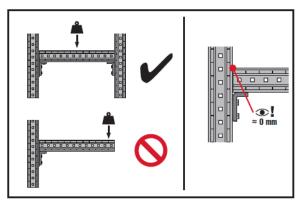

Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f _v = 235 N	f _{II} = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{mm^2}$	$\frac{1_u}{mm^2}$	$\frac{L - 210000}{mm^2}$	$G = 80709 \frac{1}{\text{mm}^2}$


Instruction For Use:







Page 2/4

Data version 1.2 I Date 11.2016

MIQC-90-L angle connector

Possible loading cases		
Standard		

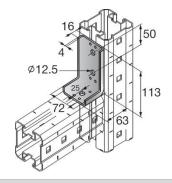
Design criteria used for loading capacity

Methodology:

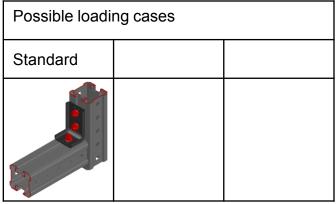
- Finite element analysis
- Hardware tests

Standards and codes:

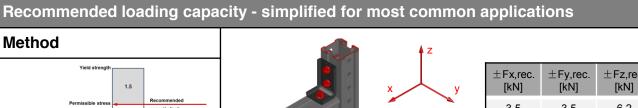
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

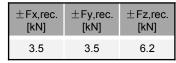

Software:

- Ansys 16.0
- Microsoft Excel

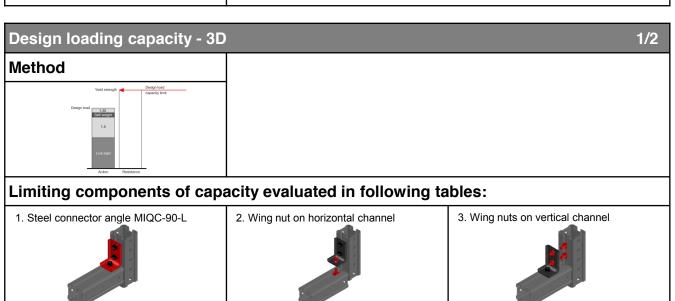

Environmental conditions:

- static loads
- no fatigue loads

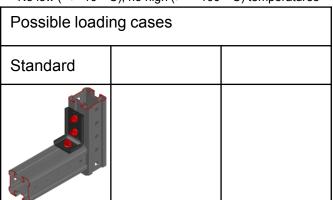

Simplified drawing:



MIQC-90-L angle connector



Loading case: Standard	Combinations covered by loading case	
BOM: Angle incl. all connectivity material 1x MIQC-90-L 2119868	H-MIQ girder on grooved section of V-MIQ girder	Connector used for fixing H-MIQ girder on grooved section of V-MIQ girder from bottom


These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

MIQC-90-L angle connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector angle MIQC-90-L

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
10.72	14.85	5.75	5.75	14.07	9.32
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.3	0.3	0.19	0.18	0.08	0.08

Interaction

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Wing nut on horizontal channel (Note: Interaction is not necessary.)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
5.21	5.21	5.20	5.20	*	12.89
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
*	*	*	*	*	*

^{*} not decisive

3. Wing nuts on vertical channel (Note: Interaction is not necessary.)

	•				
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
6.52	*	*	*	9.93	9.93
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
*	*	*	*	*	*

^{*} not decisive

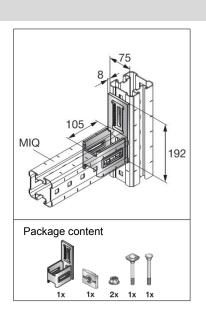
Page 1/4

MIQC-90-MI angle connector

Designation	Item number
MIQC-90-MI angle connector	2140257

Corrosion protection:

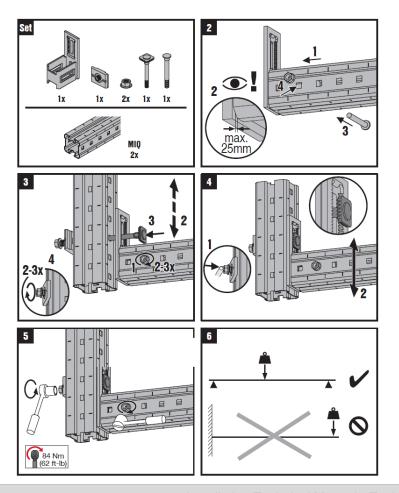
Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns


Weight:

2060 g

Submittal text:

Hilti angle, 90°, MIQ system, MIQC-90-MI, Hot dipped galvanized, angle typically used for connection of one MIQ and one MI perpendicular girders, angle connector with oblong serrated holed base plate fitted for connection on MI girder with MIA-EH easy hand screw, back plate and self locking nut (all included in the pack) on one side and the other side of the angle is shaped to accommodate MIQ girder,


material weight 2060 grams incl. all connectivity material.

Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f - 235 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{mm^2}$	mm ²	mm ²	mm ²

Instruction For Use:

Page 2/4

MIQC-90-MI angle connector

Possible loading cases				
Standard				

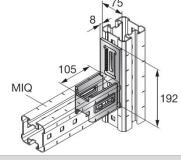
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

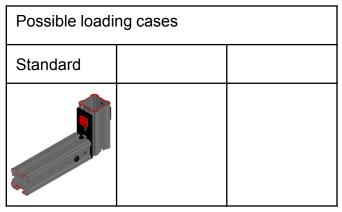
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

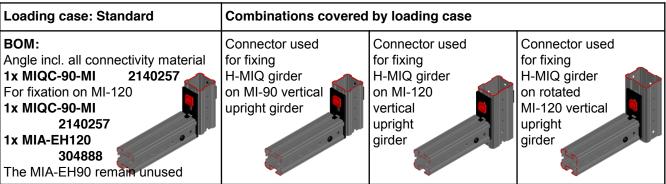

Software:

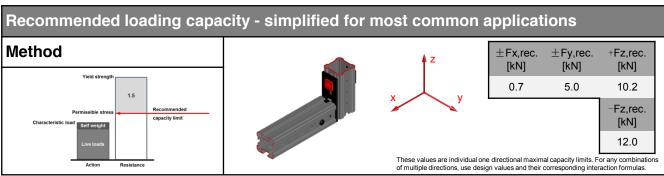
- Ansys 16.0
- Microsoft Excel
- Mathcad 15

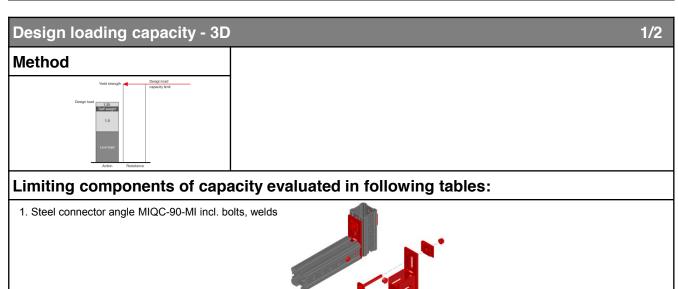
Environmental conditions:

- static loads
- no fatigue loads






Page 3/4


Data version 1.2 I Date 11.2016

MIQC-90-MI angle connector

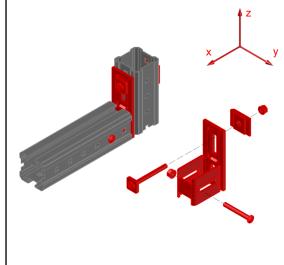
Page 4/4

MIQC-90-MI angle connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low ($< -10^{\circ}$ C), no high ($> +100^{\circ}$ C) temperatures

110 1011 (1 10	o),g (*				
Possible loadi	Possible loading cases				
Standard					


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector angle MIQC-90-MI incl. bolts, welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.06	1.06	7.50	7.50	15.30	18.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.90	0.90	0.00	0.00	0.00	0.00

Interaction:

Interaction for +Fz if FyEd ≤ 0.6 kN and Mx ≤ 0.07 kNm :

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{xEd}}{M_{xRd}} \leq 1$$

Interaction for +Fz if FyEd > 0.6 kN and Mx > 0.07 kNm:

$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{\frac{F_{z.Rd}}{1.672}} + \frac{M_{xEd}}{M_{xRd}} \leq 1$$

Interaction for -Fz:

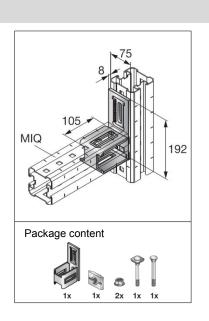
$$\frac{F_{xEd}}{F_{xRd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{\left| -F_{z.Ed} \right|}{\left| -F_{z.Rd} \right|} + \frac{M_{xEd}}{M_{xRd}} \leq 1$$

Page 1/4

MIQC-90-MI-V angle connector

Designation	Item number
MIQC-90-MI-V angle connector	2140258

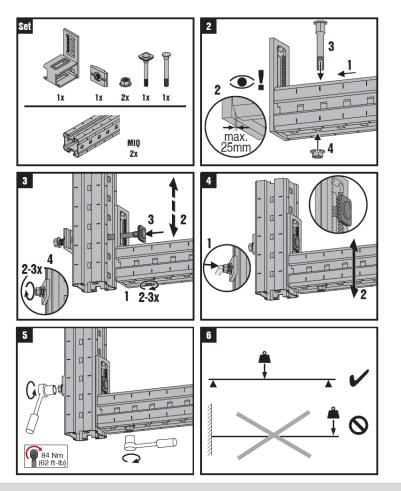
Corrosion protection:


Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

Weight:

2060 g

Submittal text:


Hilti angle, 90°, MIQ system, MIQC-90-MI-V, Hot dipped galvanized, angle typically used for connection of one MIQ and one MI perpendicular girders, angle connector with oblong serrated holed base plate fitted for connection on MI girder with MIA-EH easy hand screw, back plate and self locking nut (all included in the pack) on one side and the other side of the angle is shaped to accommodate rotated MIQ girder, material weight 2060 grams incl. all connectivity material.

Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{mm^2}$	$\frac{1}{m} = 300 \frac{mm^2}{mm^2}$	$\frac{L - 210000}{\text{mm}^2}$	$\frac{G - 80709}{\text{mm}^2}$

Instruction For Use:

Page 2/4

MIQC-90-MI-V angle connector

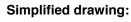
Possible loading cases				
Standard				

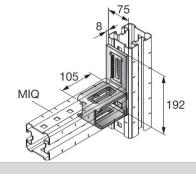
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

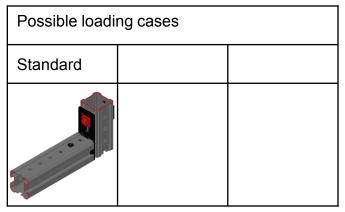
Standards and codes:

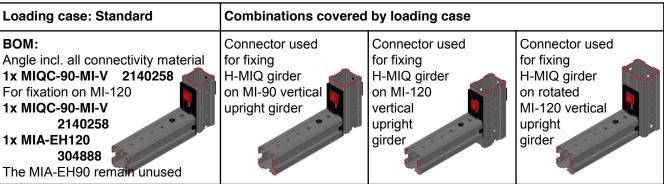

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

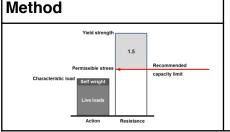

Software:

- Ansys 16.0
- Microsoft Excel
- Mathcad 15

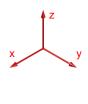
Environmental conditions:

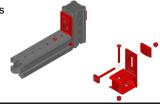

- static loads
- no fatigue loads




Page 3/4

MIQC-90-MI-V angle connector




±Fx,rec.	±Fy,rec.	±Fz,rec.	
[kN]	[kN]	[kN]	
0.70	9.00	5.40	

These values are individual one directional maximal capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.

Design loading capacity - 3D 1/2 Method

Limiting components of capacity evaluated in following tables:

1. Steel connector angle MIQC-90-MI-V incl. bolts, welds

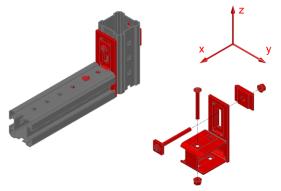
Page 4/4

MIQC-90-MI-V angle connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Possible loading cases			
Standard			


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector angle MIQC-90-MI-V incl. bolts, welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.06	1.06	13.50	13.50	8.10	8.10
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.90	0.90	0.00	0.00	0.00	0.00

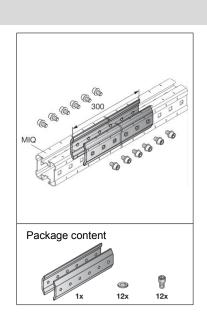
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \le 1$$

Page 1/6

MIQC-90-E girder extension connector

Designation	Item number
MIQC-90-E girder extension connector	2140259

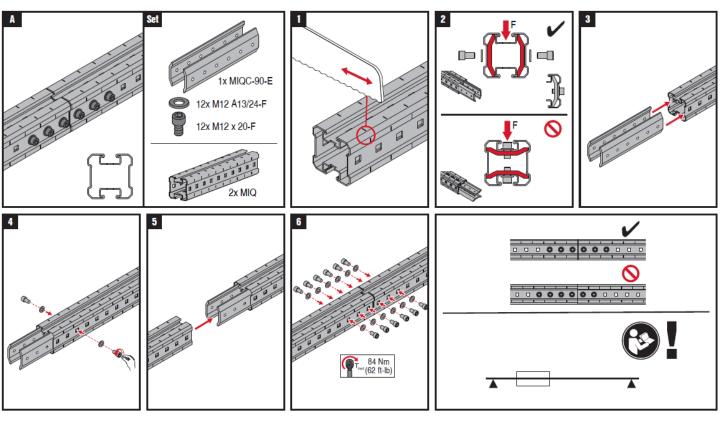
Corrosion protection:


Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

Weight:

3476 g

Submittal text:


Hilti girder extension connector, MIQ system, MIQC-90-E, Hot dipped galvanized, angle typically used for extension of Hilti MIQ girder, Extension either connected to MI side of the girder or to MIQ grove of the MIQ girder. Both through bolting the girder to inner placed extension with 12 screws and washers (included in the packaging). material weight 3476 grams incl. all connectivity material.

Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f _v = 235 N	f _{II} = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	' mm²	mm²	mm²	mm²

Instruction For Use:

Page 2/6

MIQC-90-E girder extension connector

Possible loading cases			
Open up	Open to the side		

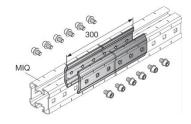
Design criteria used for loading capacity

Methodology:

- · Finite element analysis
- Hardware tests

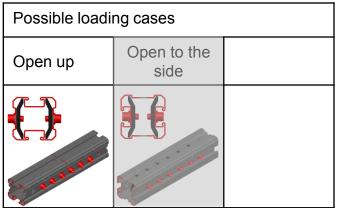
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

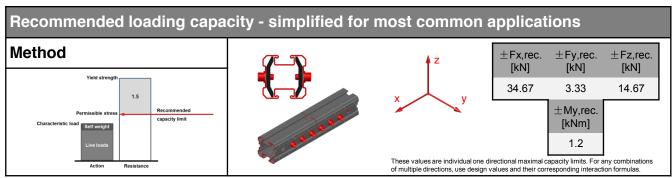

Software:

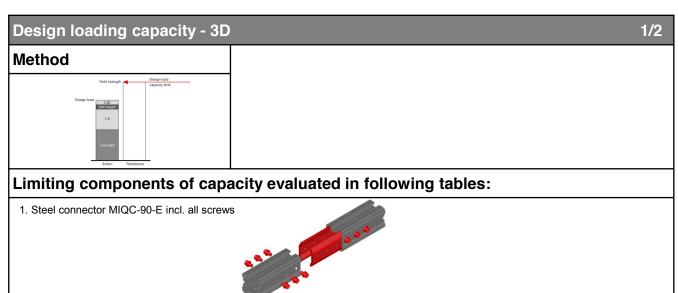
- Ansys 16.0
- Microsoft Excel

Environmental conditions:


- static loads
- no fatigue loads

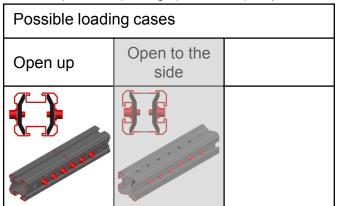
Simplified drawing:




Page 3/6

MIQC-90-E girder extension connector

Loading case: Open up	Combinations covered by loading case
BOM: Angle incl. all connectivity material 1x MIQC-90-E 2140259	

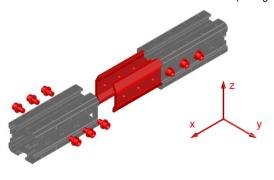


Page 4/6

MIQC-90-E girder extension connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

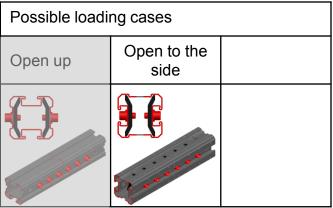

Design loading capacity - 3D

2/2

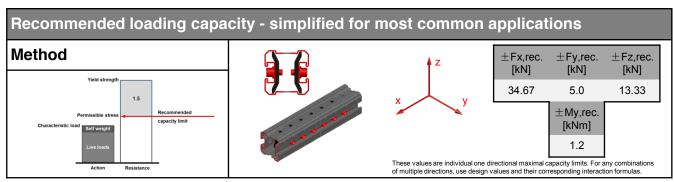
Summary of design loads*

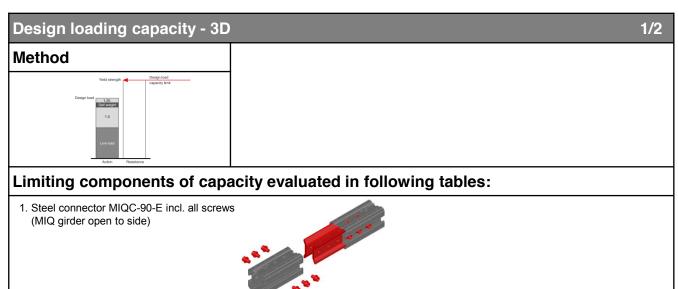
NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1.Steel connector MIQC-90-E incl. all screws (MIQ girder open up)



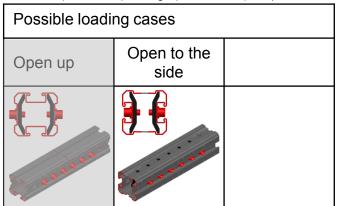
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
52.00	52.00	5.00	5.00	22.00	22.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.80	0.80	1.80	1.80	2.00	2.00


$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


Page 5/6

MIQC-90-E girder extension connector

		1
Loading case: Open to the side		Combinations covered by loading case
BOM: Angle incl. all connectivity material 1x MIQC-90-E	2140259	

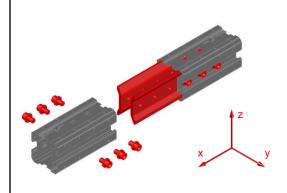


Page 6/6

MIQC-90-E girder extension connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1.Steel connector MIQC-90-E incl. all screws (MIQ girder open to side)

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
52.00	52.00	7.50	7.50	20.00	20.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.60	0.60	1.80	1.80	1.60	1.60

Interaction:

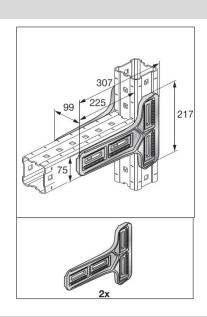
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/5

MIC-90-LH Connector

Designation	Item number
MIC-90-LH	2048107

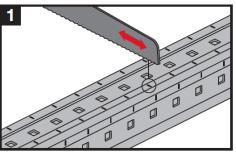
Corrosion protection:

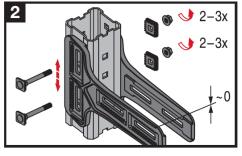

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

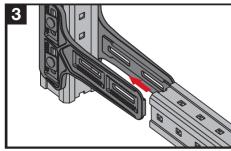
Weight:

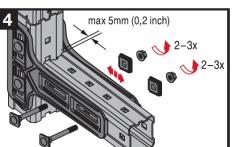
3800 g

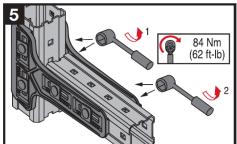
Submittal text:

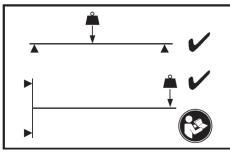

Hot dipped galvanized, 90° Hilti MI angle connector, typically used for connecting two perpendicular MI or MIQ girders, where the horizontal girder is connected to the side of the vertical girder. Oblong holes enable fine adjustment and are serrated to improve holding and load values. Connector is used on the sides of the girders. Suitable for cantilever applications.

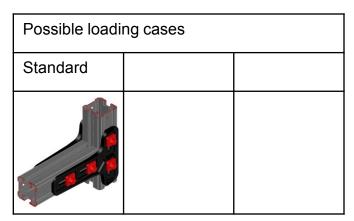



Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
Connector: C30-1.0528	$F_y = 250 \frac{N}{mm^2}$	$F_u = 480 \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$
Toothed plate: S235 - EN 10250-2	$F_y = 235 \frac{N}{mm^2}$	$F_{u} = 360 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:





The same assembly principles and torque moments should be applied for MIQ girders

Page 2/5

MIC-90-LH Connector

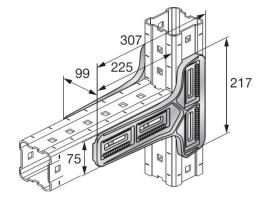
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

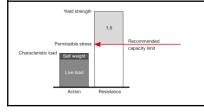
Page 3/5

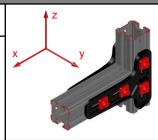
MIC-90-LH Connector

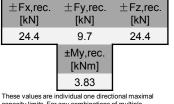
Loading case: Standard

BOM:

Angle does not include all components 1x MIC-90-LH connector Connectivity material ordered separately 4x MIA-EH90 easy hand screw 304887 4x MIA-TP serrated plate 305707 M12-F-SL-WS 3/4" lock nut 382897

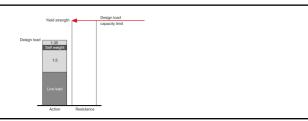

Combinations covered by loading case


Connector used for perpendicular connections of two MIQ-90 girders, to enable a cantilever arm

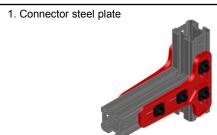


Recommended loading capacity - simplified for most common applications

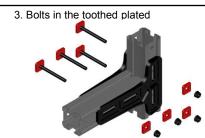
Method



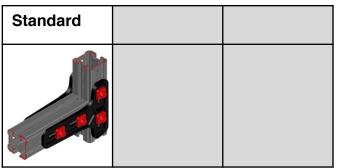
capacity limits. For any combinations of multiple directions, use design values and their corresponding interaction formulas.


Design loading capacity - 3D


1/3


Method

Limiting components of capacity evaluated in following tables:

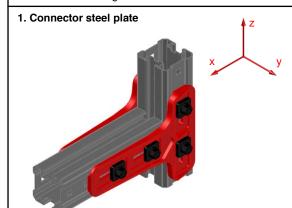

Page 4/5

Data version 1.2 I Date 11.2016

MIC-90-LH Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

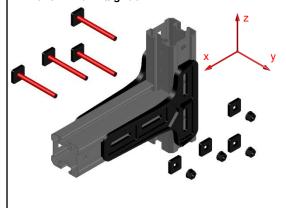


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
112.0	112.0	14.50	14.50	72.00	72.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.75	1.75	5.75	5.75	1.73	1.73

Interaction:

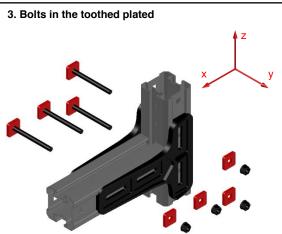
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Bolts in the MIQ-girder

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	Not decisive	Not decisive	36.64	36.64
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
Not decisive					

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$



Page 5/5

MIC-90-LH Connector

Design loading capacity - 3D

3/3

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
113.0	113.0	Not decisive	Not decisive	113.0	113.0
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
Not decisive					

Interaction:

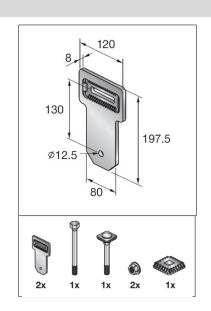
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} \le 1$$

Page 1/5

MIC-U-MA Connector

Designation	Item number
MIC-U-MA	304806

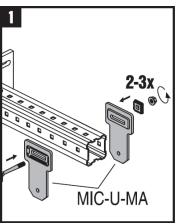
Corrosion protection:

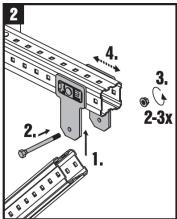

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

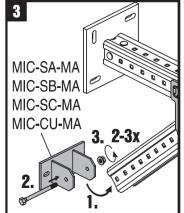
Weight:

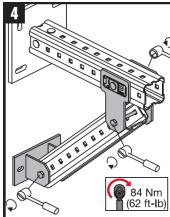
2630 g incl. components

Submittal text:


Hot dipped galvanized Hilti MI connector, typically used for connecting two MI or MIQ girders, where one girder is braced / supported by the other in an angle, to improve total load capacity of the structure. One oblong hole enables fine adjustment and is serrated to improve holding. Connector is used on the sides of the girders.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f = 235 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y - 233}{\text{mm}^2}$	$\frac{1}{m} = 300 \frac{mm^2}{m}$	$\frac{L - 210000}{\text{mm}^2}$	$\frac{G - 80709}{\text{mm}^2}$

Instruction For Use:

The same assembly principles and torque moments should be applied for MIQ girders

MIC-U-MA Connector

Possible loading cases				
Standard				

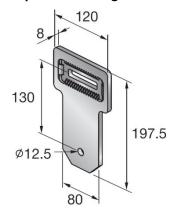
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

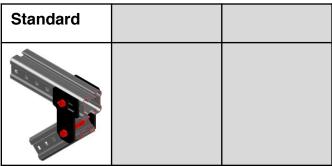

Software:

- Mathcad 15.0
- Microsoft Excel

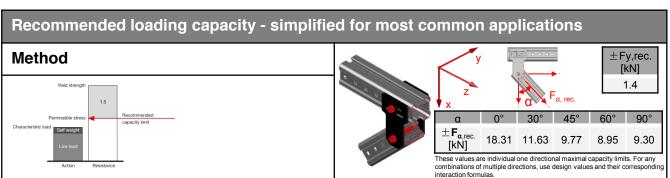
Environmental conditions:

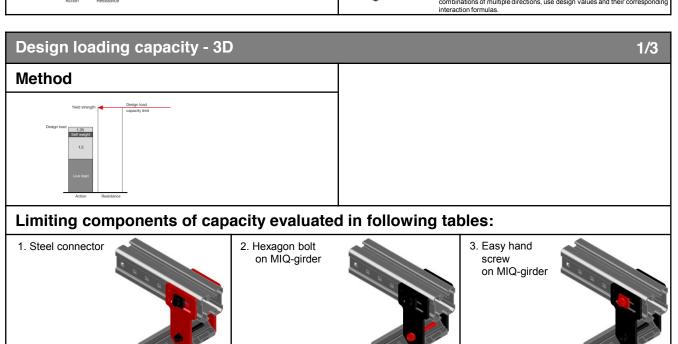
- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:



Page 3/5




Data version 1.2 I Date 11.2016

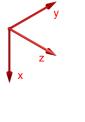
MIC-U-MA Connector

•			
Loading case: Standa	ard	Combinations covered by loadin	g case
BOM: Angle incl. all components 1x MIC-U-MA	304806	Connector used for an angular connection of two MI-90 Or MIQ-90 girders (bracket brace)	

MIC-U-MA Connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
40.32	40.32	2.11	2.11	13.96	13.96
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.63	0.63	0.00	0.00	0.00	0.00

includes cross section resistance of steel plate and contact pressure Interaction for a general force F_α with a certain inclination α

 $F_{\alpha x E d} = F_{\alpha}^* \cos \alpha$ and F_{αzEd}=F_α*sinα

 $\frac{F_{\alpha.x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{\alpha.z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

2. Hexagon bolt on MIQ-girder

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
27.47	27.47	Not decisive	Not decisive	27.47	27.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.24	1.24	0.00	0.00	0.00	0.00

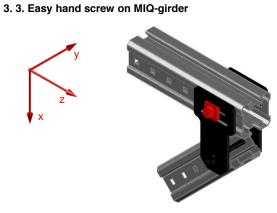
 $F_{\alpha Rd}$ = F_{xRd} = F_{zRd} includes shear and bending of the bolt, bearing resistance connector plate and channel MIQ-90

The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force $\boldsymbol{F}_{\alpha Ed}$ in the inclined strut has to be compared with the resistance value F_{αRd}.

Interaction:

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$



Page 5/5

MIC-U-MA Connector

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
Not decisive	Not decisive	16.87	16.87	27.40	27.40
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.23	1.23	0.00	0.00	0.00	0.00

includes shear, tension and bending of the bolt, bearing resistance channel MIQ90 and tooth plate

Interaction:

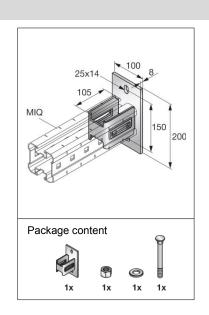
$$\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Page 1/4

MIQC-C90-U base material connector

Designation	Item number
MIQC-C90-U base material connector	2134819

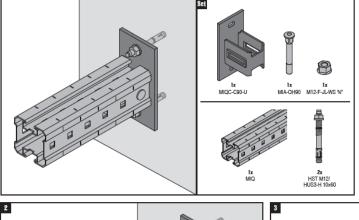
Corrosion protection:

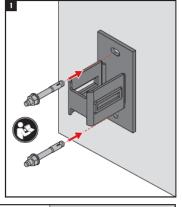

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

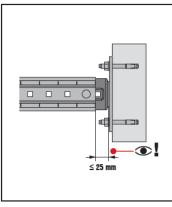
Weight:

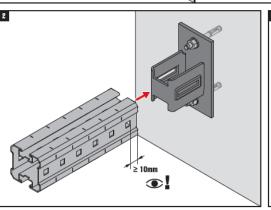
2015 g

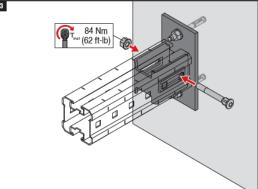
Submittal text:

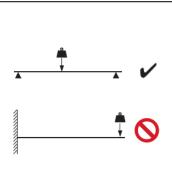

Hilti angle, 90°, MIQ system, MIQC-C90-U, Hot dipped galvanized, concrete base material connector typically used for perpendicular of perpendicular Hilti MIQ girder to concrete, base plate with two holes fitting to two M12 sized anchors. Connection part accommodating MIQ girder through bolted by MIA-OH90 screw with washer and lock nut (included in the pack) material weight 2015 grams incl. all connectivity material.

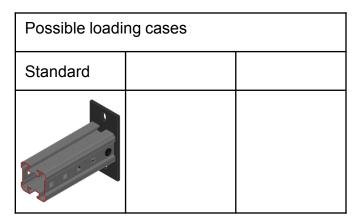



Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = $80769 \frac{N}{mm^2}$


Instruction For Use:





Page 2/4

MIQC-C90-U base material connector

Design criteria used for loading capacity

Methodology:

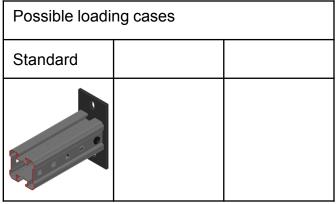
- Finite element analysis
- Hardware tests

Standards and codes:

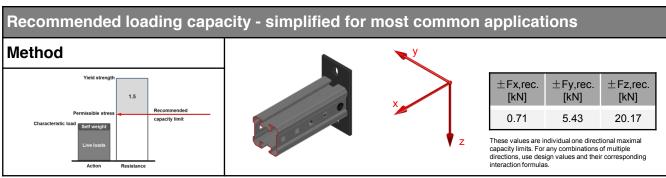
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

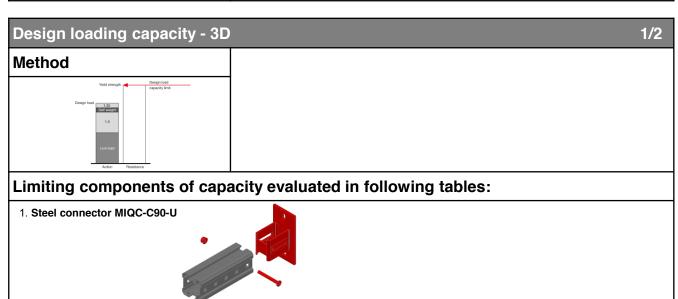
Software:

- Ansys 16.0
- Microsoft Excel


Environmental conditions:

- static loads
- no fatigue loads


Simplified drawing:


Page 3/4

MIQC-C90-U base material connector

Loading case: Standard	Combinations covered by loading case	
BOM: Angle incl. all connectivity material 1x MIQC-C90-U base material connector 2134819	Connector used for fixing perpendicular MIQ girder on base material- concrete	

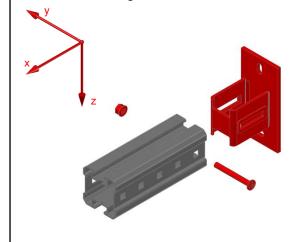
Page 4/4

MIQC-C90-U base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

`	<i>,,</i> 0 (, ,		
Possible loading cases				
Standard				


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector angle MIQC-90-L

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
1.06	1.06	8.14	8.14	30.25	30.25
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.90	0.90	0.56*	1.56*	0.24*	0.24*

^{*} the bending resistances are only valid with installation tolerance almost 0 mm

Interaction:

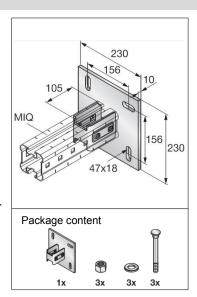
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$

Page 1/4

MIQC-C90 base material connector

Designation	Item number
MIQC-C90 base material connector	2120144

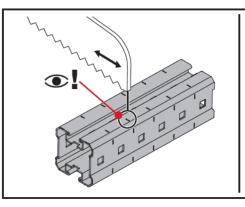
Corrosion protection:

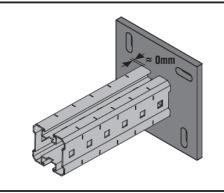

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

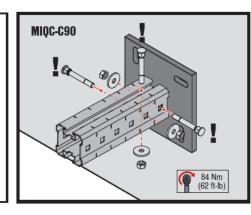
Weight:

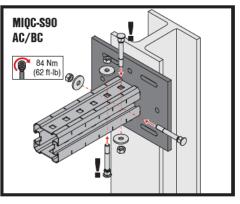
4698g connector (4928g incl. accessories)

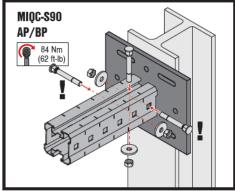
Submittal text:

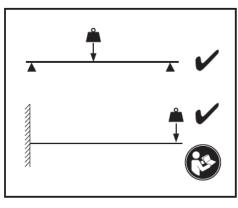

Hilti base material connector, 90°, MIQ system, MIQC-C90, Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to concrete, The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the base plate is connected to concrete by Hilti anchor 4x HST M16 (not in pack) material weight 4928 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR - DIN EN 10025	$f_y = 235 \frac{N}{mm^2}$	$f_u = 360 \ \frac{N}{mm^2}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$


Instruction For Use:



Page 2/4

Data version 1.2 I Date 11.2016

MIQC-C90 base material connector

Possible loading cases		
Standard		

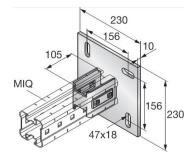
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

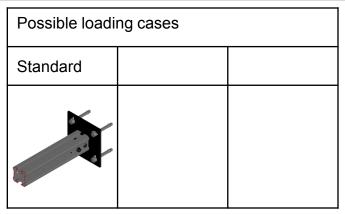
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

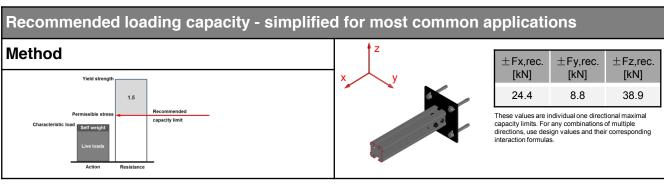

Software:

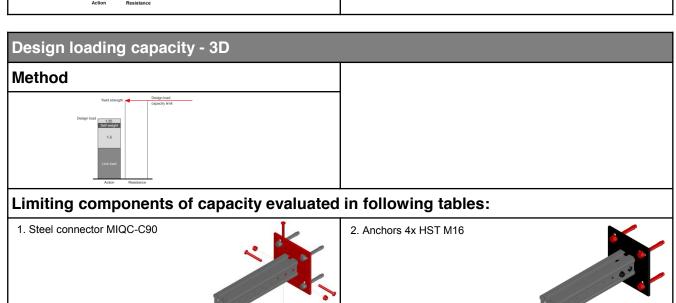
- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads


Simplified drawing:


Page 3/4


Data version 1.2 I Date 11.2016

MIQC-C90 base material connector

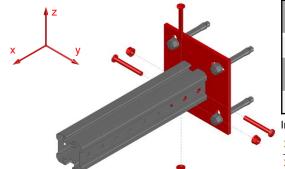
Loading case: Standard		Combinations covered by loading case		
BOM: Angle incl. all connectivity material 1x MIQC-C90 4x HST-R M16x130/10	2120144 2085454	Connector used for fixing H-MIQ girder, perpendicularly to concrete		

MIQC-C90 base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Possible loading cases			
Standard			


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector MIQC-C90 (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	13.18	13.18	58.37	58.37
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.55	1.55	1.67	1.67	1.08	1.08

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

2. Anchors 4x HST M16

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
47.50	*	66.00	66.00	66.00	66.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
7.30	7.30	4.70	4.70	4.70	4.70

Interaction:

$$\frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} = \beta_{V} \le 1$$

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} = \beta_N \le 1$$

$$\beta_{\rm N} + \beta_{\rm V} \le 1.2$$

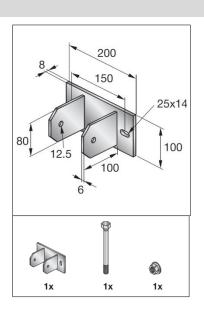
^{*} not decisive

Page 1/5

MIC-CU-MA Base Material Connector - Concrete

Designation Item number MIC-CU-MA 304828

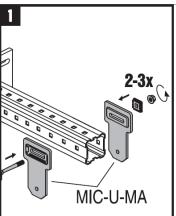
Corrosion protection:

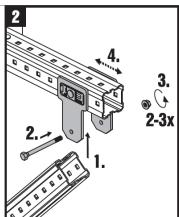

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

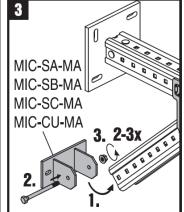
Weight:

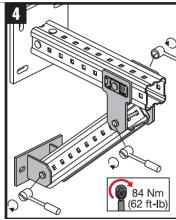
2210 g incl. components

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 and MIQ girder to concrete in an angle, usually when it's used as a brace for another girder. Two oblong anchor holes in perpendicular positions enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f _v = 235 N	f _{II} = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{1_y} = 235 \frac{1}{mm^2}$	$\frac{1_u - 300}{\text{mm}^2}$	$\frac{1}{10000} = \frac{1}{10000}$	$G = 80769 \frac{mm^2}{mm^2}$

Instruction For Use:

The same assembly principles and torque moments should be applied for MIQ girders

Page 2/5

Data version 1.2 I Date 11.2016

MIC-CU-MA Base Material Connector - Concrete

Possible loading cases				
Standard				

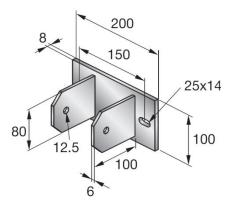
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

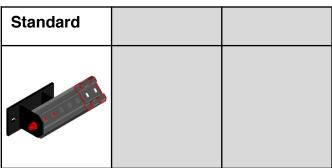

Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

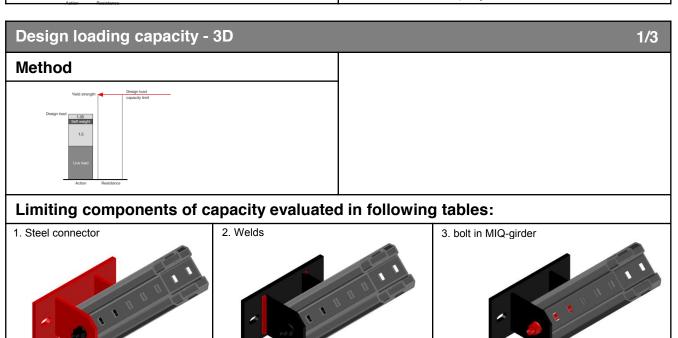
Simplified drawing:


HST2 M12x105/10

*Anchors not incl. in capacity limits

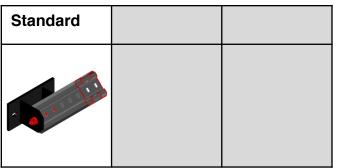
Data version 1.2 I Date 11.2016

Page 3/5


MIC-CU-MA Base Material Connector - Concrete

2107848

Loading case: Standard	Combinations covered by load	ling case
BOM: Angle incl. all components 1x MIC-CU-MA Associated anchors* for cracked concrete 2x HST3 M12x105 30/10 2105718	Baseplate connector used for an angled connection of an MIQ-90 girder to concrete (bracing)	

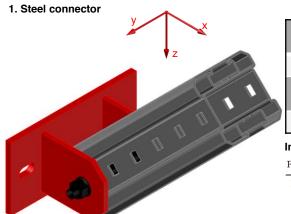


Page 4/5

MIC-CU-MA Base Material Connector - Concrete

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

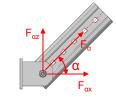


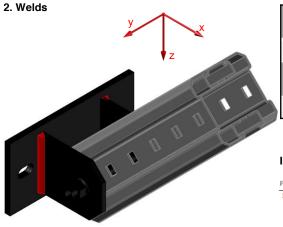
Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.




+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
25.39	104.01	3.22	3.22	11.90	11.90
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.58	0.58	0.00	0.00	0.00	

Interaction:

$$\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed,\alpha}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$$

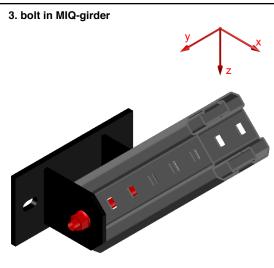
with $F_{x.Ed.\alpha} = F_{\alpha} * cos\alpha$ $F_{z.Ed.\alpha} = F_{\alpha} * sin\alpha$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
325.83	325.83	266.04	266.04	266.04	266.04
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
12.90	12.90	4.34	4.34	15.80	15.80

Interaction:

$$\frac{F_{x.Ed,\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed,\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed,\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

ex=0.07m $\mathsf{F}_{x.\mathsf{Ed}.\alpha} \mathsf{=} \mathsf{F}_{\alpha} ^* \mathsf{cos} \alpha$ $F_{z.Ed.\alpha} = F_{\alpha} * sin\alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha} * e_x$ $M_{z.Ed} = F_{y.Ed} \cdot e_x$



Page 5/5

MIC-CU-MA Base Material Connector - Concrete

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.33	1.33	0.00	0.00	0.00	0.00

Interaction:

$$F_{\alpha Rd} = F_{xRd} = F_{zRd}$$

The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction between F_x and F_z . The normal force $F_{\alpha Ed}$ in the inclined strut has to be compared with the resistance value $F_{\alpha Rd}$.

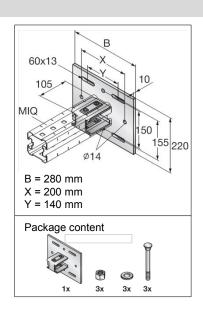
$$\frac{F_{\alpha,Ed}}{F_{\alpha,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$$

Page 1/6

MIQC-S90-AC base material connector

Designation	Item number
MIQC-S90-AC base material connector	2120270

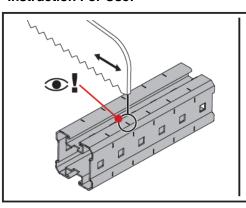
Corrosion protection:

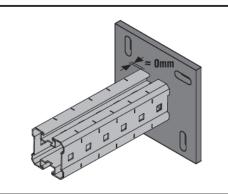

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

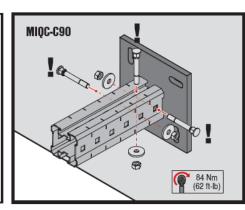
Weight:

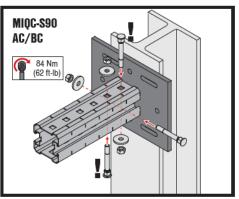
5343g connector (5573g incl. accessories)

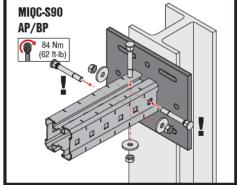
Submittal text:

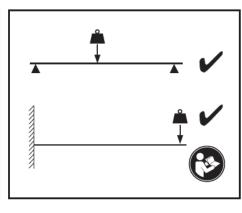

Hilti base material connector, 90°, MIQ system, MIQC-S90-AC, Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section perpendicular to structural steel beam, The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12(not in pack) beam clamps to flange (width 75-165mm width) of I-beam or by boxing any structural steel profile (width 75-165mm) using Hilti backing plate MIQB-SA (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack) material weight 5573 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	F = 210000 N	C - 90760 N
DIN EN 10025	$\frac{1_y - 235}{\text{mm}^2}$	$\frac{1_u - 300}{\text{mm}^2}$	$L = 210000 \frac{mm^2}{mm^2}$	$\frac{G - 80769}{mm^2}$


Instruction For Use:



Page 2/6

MIQC-S90-AC base material connector

Possible loading cases				
Clamped				

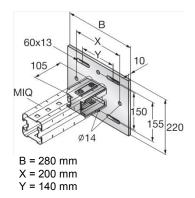
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

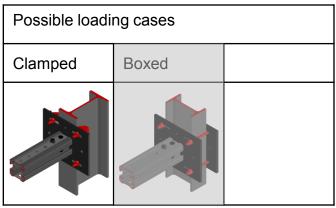
Standards and codes:

_		····	
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

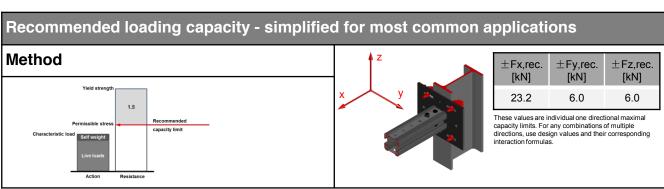

Software:

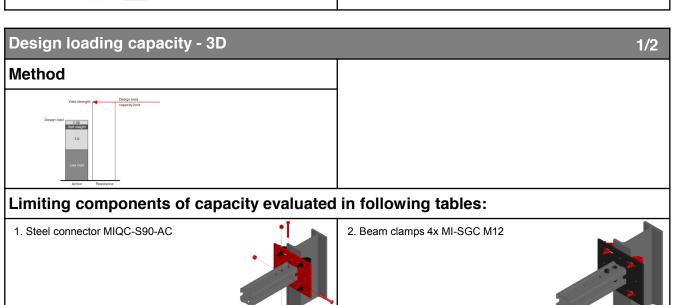
- Ansys 16.0
- Microsoft Excel

Environmental conditions:


- static loads
- no fatigue loads

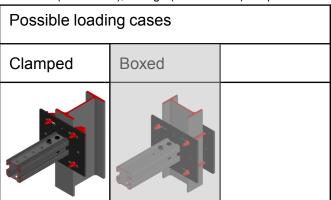
Simplified drawing:





MIQC-S90-AC base material connector

Loading case: Clamped		Combinations covered by loading case		
BOM: Base material connector incl. all 1x MIQC-S90-AC Beam clamp 4x MI-SGC M12	connectivity material 2120270 233859	MIQ girder, perpendicularly to flange (width of 75-165mm) of structural steel open section, perpendicularly to structural steel beam		

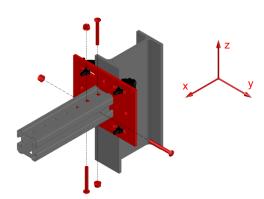


Page 4/6

MIQC-S90-AC base material connector

Conditions of the loading capacity tables:

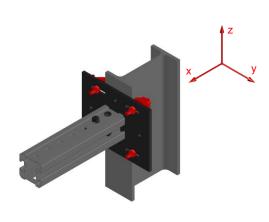
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

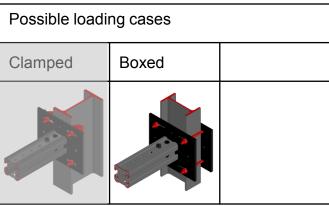

1. Steel connector MIQC-S90-AC (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	57.03	57.03	13.18	13.18
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	0.84	0.84	0.70	0.70

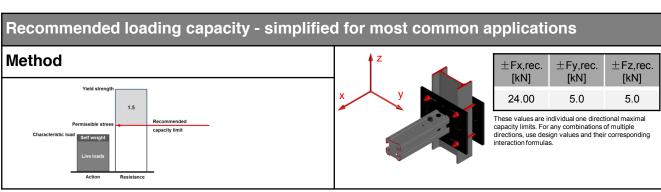
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

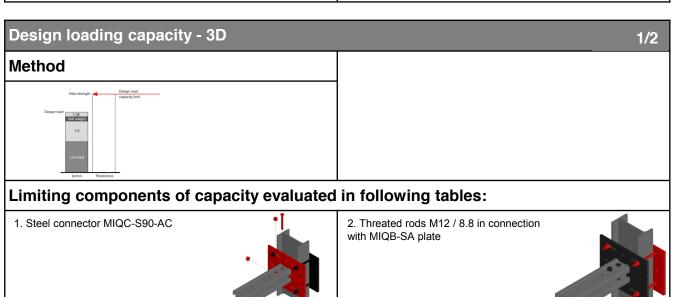
2. Clamps 4x MI-SGC M12

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	*	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.09	2.09	1.39	1.39


Interaction:

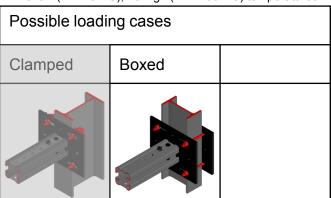
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


* not decisive



MIQC-S90-AC base material connector

Loading case: Boxed		Combinations covered by loading case	
BOM: Base material connector incl. all connect	ctivity material 2120270 2123565 419103 382897	Connector used for fixing MIQ girder, perpendicularly to flange (width of 75-165mm) of structural steel open section, perpendicularly to structural steel beam	

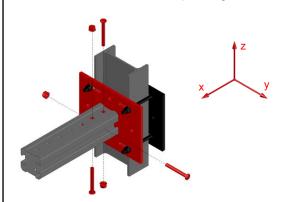


Page 6/6

MIQC-S90-AC base material connector

Conditions of the loading capacity tables:

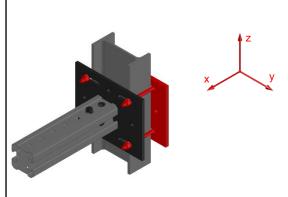
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector MIQC-S90-AC (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	57.03	57.03	13.18	13.18
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	0.84	0.84	0.70	0.70

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Threated rods M12 / 8.8 in connection with MIQB-SA plate

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	11.65	11.65	7.77	7.77

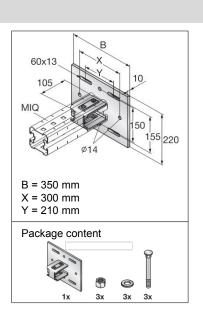
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/6

MIQC-S90-BC base material connector

Designation	Item number
MIQC-S90-BC base material connector	2120272

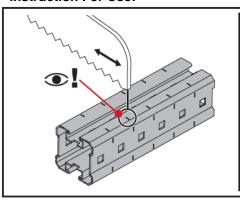
Corrosion protection:

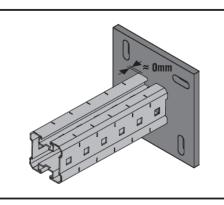

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

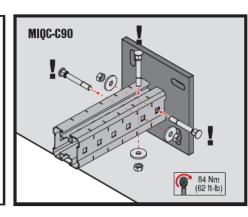
Weight:

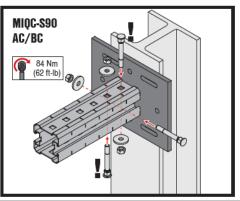
6552g connector (6782g incl. accessories)

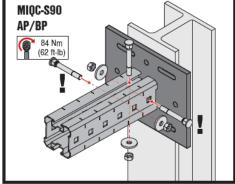
Submittal text:

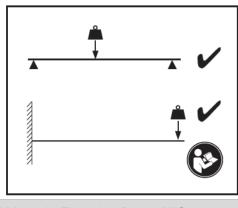

Hilti base material connector, 90°, MIQ system, MIQC-S90-BC, Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section perpendicular to structural steel beam. The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12 (not in pack) beam clamps to flange (width 165-235mm width) of I-beam or by boxing any structural steel profile (width 165-235mm) using Hilti backing plate MIQB-SB (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack) material weight 6782 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y - 233}{mm^2}$	$I_u = 300 {\text{mm}^2}$	$\frac{L - 210000}{\text{mm}^2}$	$G = 80769 \frac{mm^2}{mm^2}$


Instruction For Use:



Page 2/6

MIQC-S90-BC base material connector

Possible loading cases		
Clamped	Boxed	

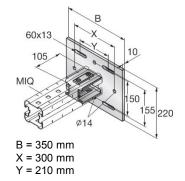
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

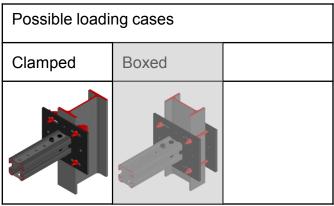
_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

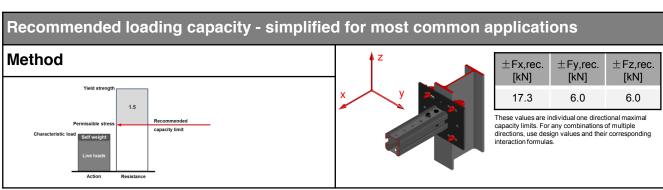

Software:

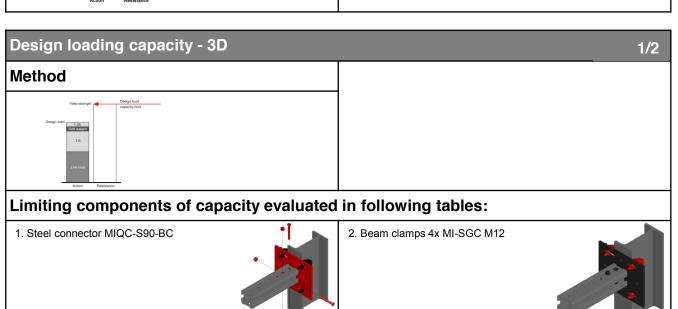
- Ansys 16.0
- Microsoft Excel

Environmental conditions:

- static loads
- no fatigue loads

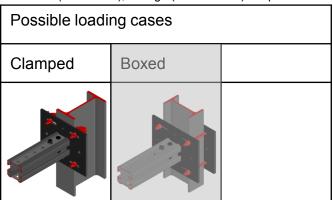

Simplified drawing:


Page 3/6


Data version 1.2 I Date 11.2016

MIQC-S90-BC base material connector

Loading case: Clamped		Combinations covered by loading case
Beam clamp	ity material 2120272 233859	Connector used for fi xing MIQ girder, perpendicularly to fl ange (width of 165-235mm) of structural steel open section, perpendicularly to structural steel beam

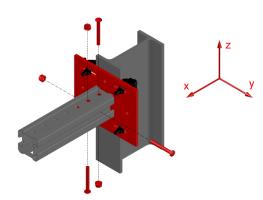


MIQC-S90-BC base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

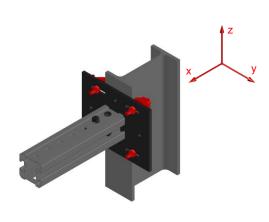

2/2

Page 4/6

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector MIQC-S90-BC (Including screws MIA-OH90 connecting channel and connector and welds)



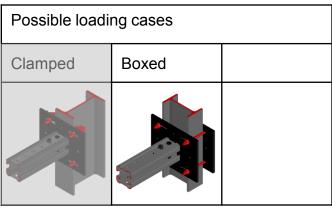
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.00	36.40	46.95	46.95	13.18	13.18
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	0.84	0.84	0.70	0.70

Interaction:

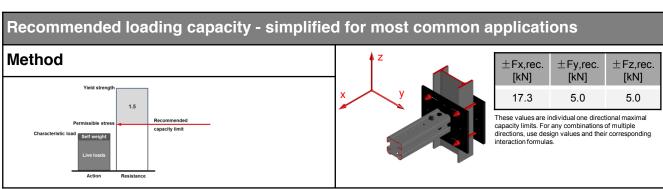
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

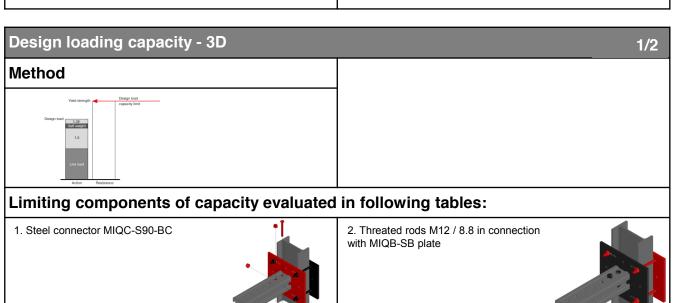
2. Clamps 4x MI-SGC M12

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	*	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.09	2.09	2.09	2.09


Interaction:

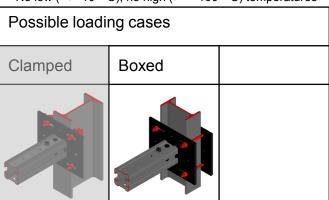
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


* not decisive



MIQC-S90-BC base material connector

Loading case: Boxed		Combinations covered by loading case
BOM: Base material connector incl. all connectivity material to material connector incl. all connectivity material to material	erial 2120272 2123566 419103 382897	Connector used for fixing MIQ girder, perpendicularly to flange (width of 165-235mm) of structural steel open section, perpendicularly to structural steel beam

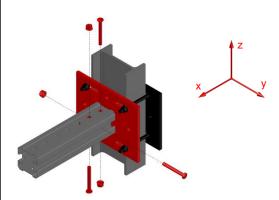


MIQC-S90-BC base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

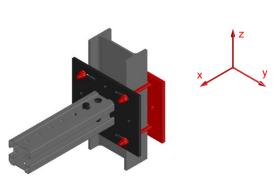

2/2

Page 6/6

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector MIQC-S90-BC (Including screws MIA-OH90 connecting channel and connector and welds)



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.00	36.40	46.95	46.95	13.18	13.18
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	0.84	0.84	0.70	0.70

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Threated rods M12 / 8.8 in connection with MIQB-SB plate

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.87	0.87	11.65	11.65	11.65	11.65

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

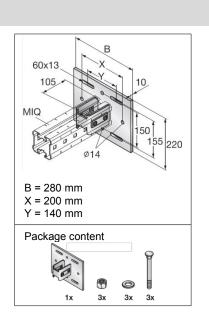
Page 1/6

Data version 1.2 I Date 11.2016

MIQC-S90-AP base material connector

Designation	Item number
MIQC-S90-AP base material connector	2120271

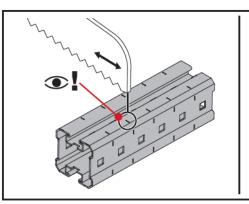
Corrosion protection:

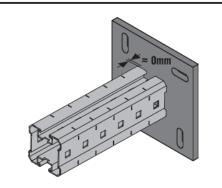

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

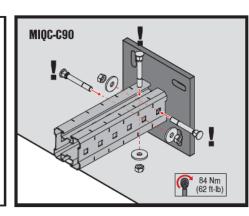
Weight:

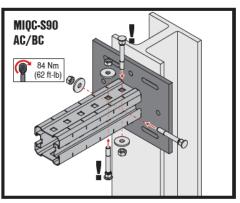
5343g connector (5699g incl. accessories)

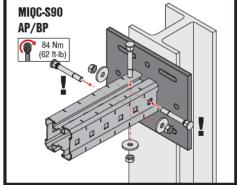
Submittal text:

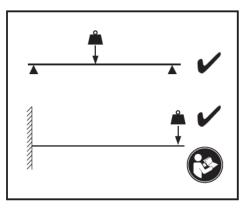

Hilti base material connector, 90°, MIQ system, MIQC-S90-AP, Hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section parallel to structural steel beam. The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12 (not in pack) beam clamps to flange (75-165mm width) of I-beam or by boxing any structural steel profile (width 75-165mm) using Hilti backing plate MIQB-SA (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack), material weight 5699 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y - 235}{\text{mm}^2}$	$\frac{1_u - 300}{\text{mm}^2}$	$L = 210000 \frac{mm^2}{mm^2}$	$\frac{G - 80769}{mm^2}$


Instruction For Use:



Page 2/6

MIQC-S90-AP base material connector

Possible loading cases				
Clamped Boxed				

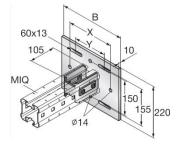
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

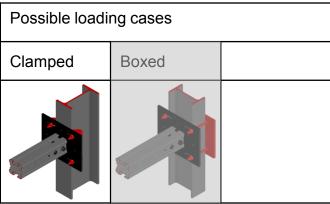

Software:

- Ansys 16.0
- Microsoft Excel

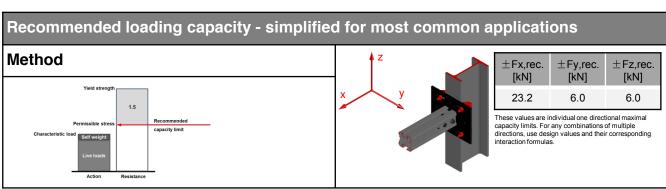
Environmental conditions:

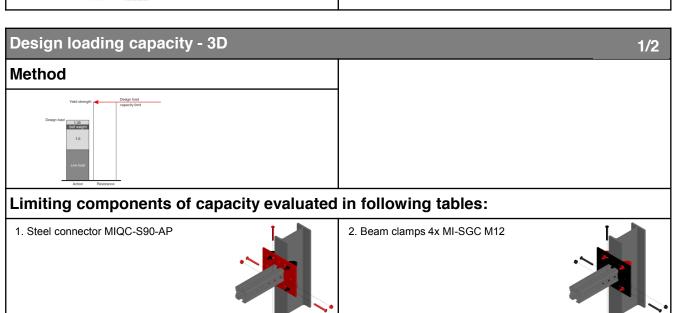
- static loads
- no fatigue loads

Simplified drawing:


B = 280 mm

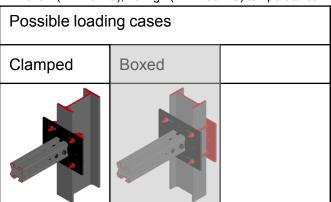
X = 200 mm


Y = 140 mm



MIQC-S90-AP base material connector

Loading case: Clamped		Combinations covered by loading case		
BOM: 1x MIQC-S90-AP Base material connector incl. all connectivity material 4x MI-SGC M12 Beam clamp	2120271 233859	Connector used for fixing MIQ girder, perpendicularly to flange (width of 75-165mm) of structural steel open section, perpendicularly to structural steel beam		

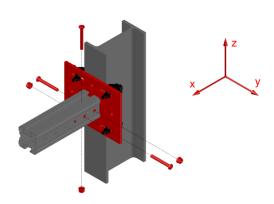


Page 4/6

MIQC-S90-AP base material connector

Conditions of the loading capacity tables:

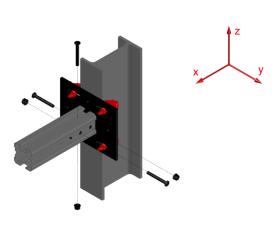
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

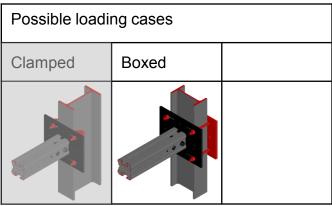

1. Steel connector MIQC-S90-BC (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	13.18	13.18	57.03	57.03
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	2.21	2.21	0.84	0.84

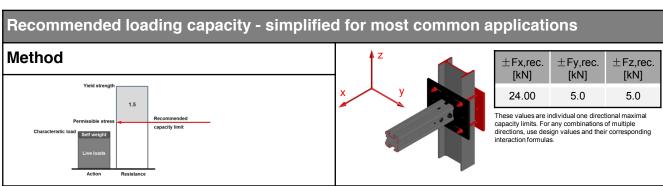
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

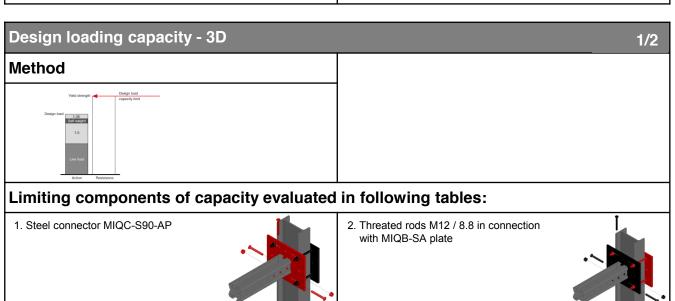
2. Clamps 4x MI-SGC M12

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	*	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.09	2.09	1.39	1.39


Interaction:

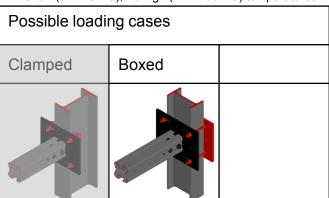
$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} + \frac{M_{y,Ed}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} \leq 1$$


* not decisive



MIQC-S90-AP base material connector

Loading case: Boxed		Combinations covered by loading case		
BOM: Base material connector incl. all connectivity material 1x MIQC-S90-AP Back (base) plate 1x MIQB-SB Threaded rods 4x AM12x1000 8.8 HDGm Self-locking nut 8x M12-F-SL WS3/4	2120271 2123566 419103 382897	Connector used for fixing MIQ girder, perpendicularly to flange (width of 75-165mm) of structural steel open section, perpendicularly to structural steel beam		

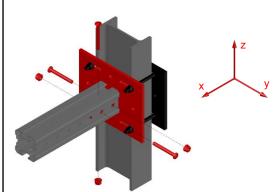


Page 6/6

MIQC-S90-AP base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

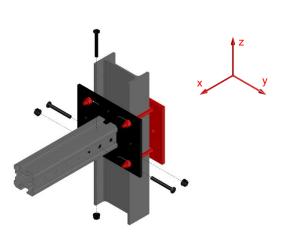

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Steel connector MIQC-S90-AP (Including screws MIA-OH90 connecting channel and connector and welds)



+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
36.64	36.64	13.18	13.18	57.03	57.03
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	2.21	2.21	0.84	0.84

Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Threated rods M12 / 8.8 in connection with MIQB-SA plate

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	35.97	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	11.65	11.65	7.77	7.77

Interaction:

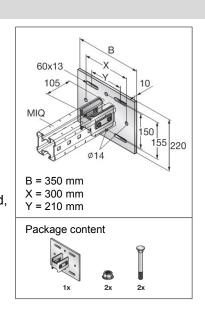
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/6

MIQC-S90-BP base material connector

Designation	Item number
MIQC-S90-BP base material connector	2120273

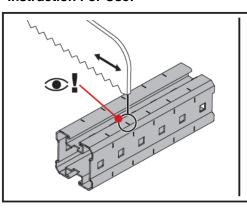
Corrosion protection:

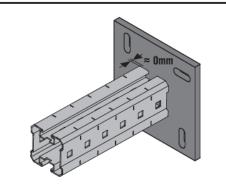

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

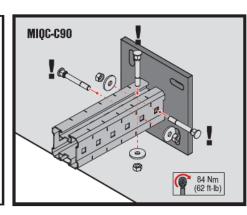
Weight:

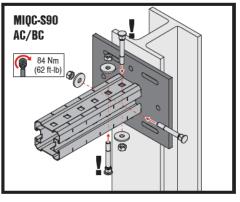
6552g connector (6782g incl. accessories)

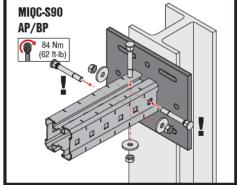
Submittal text:

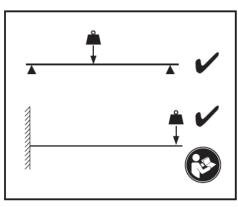

Hilti base material connector, 90°, MIQ system, MIQC-S90-BP, hot dipped galvanized, base material connector typically used for connection of perpendicular Hilti MIQ girder to structural steel with open section parallel to structural steel beam. The connected girder is slid onto connection interface of the connector and through bolted by 2 pieces of MIA-OH and self locking nut (both included in the pack) in the first and second hole closest to the end of the girder, the connection to structural steel could be done either by 4 pcs of Hilti MI-SGC M12 (not in pack) beam clamps to flange (width165-235mm width) of I-beam or by boxing any structural steel profile (width 165-235mm) using Hilti backing plate MIQB-SB (not in pack) and 4x M12 Hilti threaded rods and 4x M12-F-SL WS3/4 self locking nuts (both not in pack), material weight 6782 grams incl. all connectivity material.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	C = 90760 N
DIN EN 10025	$\frac{1_y - 235}{\text{mm}^2}$	$\frac{1_u - 300}{\text{mm}^2}$	$L = 210000 \frac{mm^2}{mm^2}$	$\frac{G - 80769}{mm^2}$


Instruction For Use:



Page 2/6

MIQC-S90-BP base material connector

Possible loading cases					
Clamped Boxed					

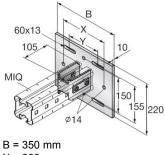
Design criteria used for loading capacity

Methodology:

- Finite element analysis
- Hardware tests

Standards and codes:

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

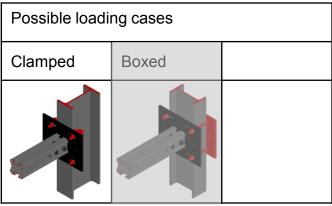

Software:

- Ansys 16.0
- Microsoft Excel

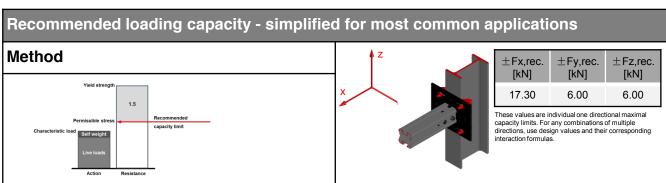
Environmental conditions:

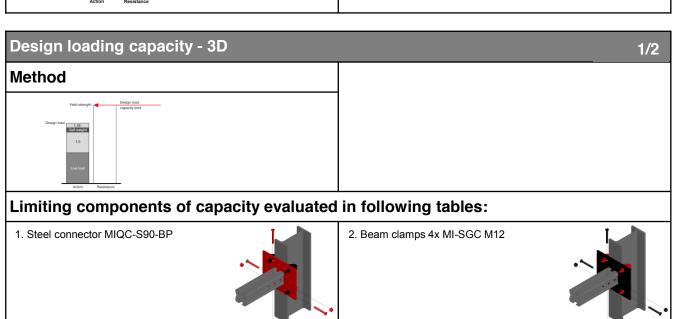
- static loads
- no fatigue loads

Simplified drawing:


X = 300 mm

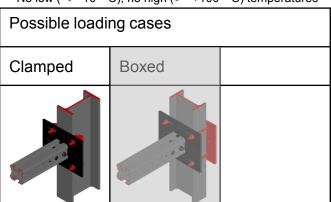
Y = 210 mm


Page 3/6


Data version 1.2 I Date 11.2016

MIQC-S90-BP base material connector

Loading case: Clamped	Combinations covered by loading case		
BOM: Base material connector incl. all connectivity material 1x MIQC-S90-BP 2120273 Beam clamp 4x MI-SGC M12 233859	Connector used for fixing MIQ girder, perpendicularly to flange (width of 75-165mm) of structural steel open section, perpendicularly to structural steel beam		

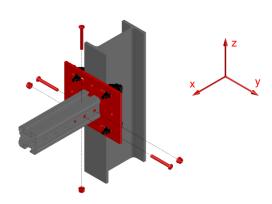


Page 4/6

MIQC-S90-BP base material connector

Conditions of the loading capacity tables:

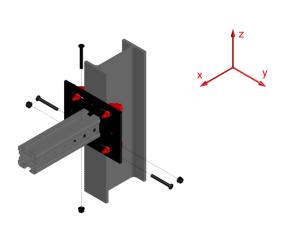
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

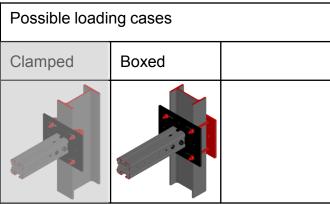

1. Steel connector MIQC-S90-BP (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.00	36.64	13.18	13.18	46.95	46.95
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	2.21	2.21	0.84	0.84

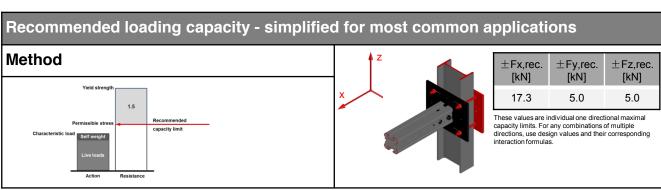
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

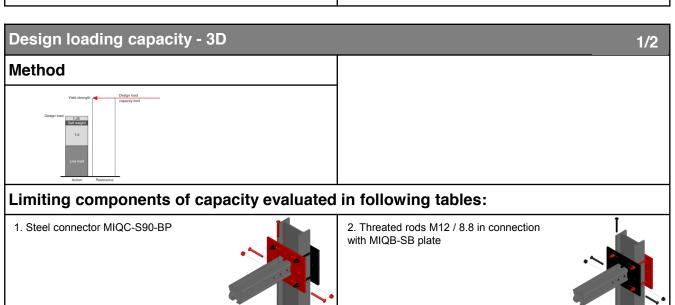
2. Clamps 4x MI-SGC M12

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	*	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.09	2.09	2.09	2.09


Interaction:

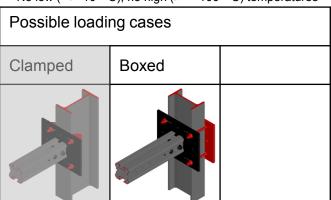
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$


* not decisive



MIQC-S90-BP base material connector

Loading case: Boxed		Combinations covered by loading case
BOM: Base material connector incl. all connectivity material 1x MIQC-S90-BP Back (base) plate 1x MIQB-SB Threaded rods 4x AM12x1000 8.8 HDGm Self-locking nut 8x M12-F-SL WS3/4	2120273 2123566 419103 382897	Connector used for fixing MIQ girder, perpendicularly to flange (width of 165-235mm) of structural steel open section, perpendicularly to structural steel beam

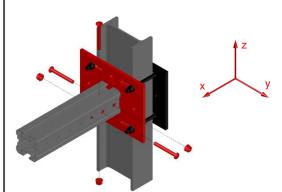


Page 6/6

MIQC-S90-BP base material connector

Conditions of the loading capacity tables:

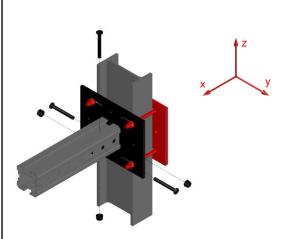
- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


1. Steel connector MIQC-S90-BP (Including screws MIA-OH90 connecting channel and connector and welds)

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
26.00	36.64	13.18	13.18	46.95	46.95
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.37	1.37	2.21	2.21	0.84	0.84

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

2. Threated rods M12 / 8.8 in connection with MIQB-SB plate

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	34.23	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.87	0.87	11.65	11.65	11.65	11.65

Interaction:

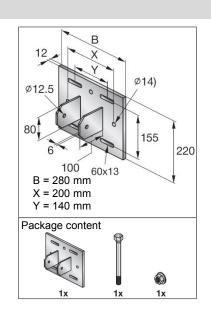
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

Page 1/8

MIC-SA-MA Base Material Connector - Steel

Designation	Item number
MIC-SA-MA	304815

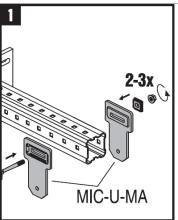
Corrosion protection:

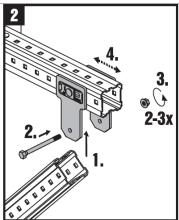

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

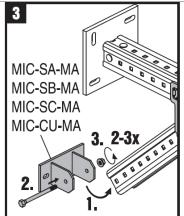
Weight:

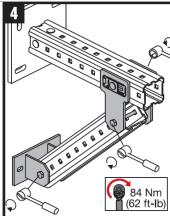
6290 g incl. components

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MIQ-90 girder to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{mm^2}$	$\frac{1}{m} = 300 \frac{mm^2}{mm^2}$	$\frac{L - 210000}{\text{mm}^2}$	$\frac{G - 80709}{\text{mm}^2}$

Instruction For Use:

The same assembly principles and torque moments should be applied for MIQ girders

Page 2/8

Data version 1.2 I Date 11.2016

MIC-SA-MA Base Material Connector - Steel

Possible loading cases				
Clamped	Clamped Boxed			

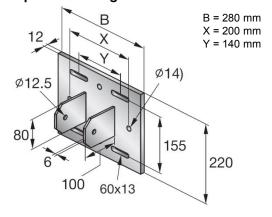
Design criteria used for loading capacity

Methodology:

Analytic calculation

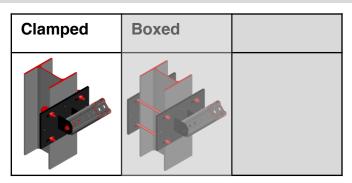
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

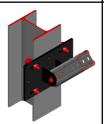
Simplified drawing:

Page 3/8

MIC-SA-MA Base Material Connector - Steel

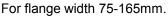
Loading case: Clamped

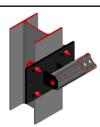
BOM:

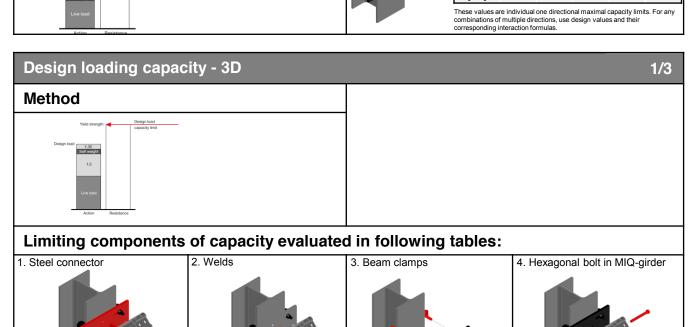

Connector incl. all associated

components

MIC-SA-MA 304815

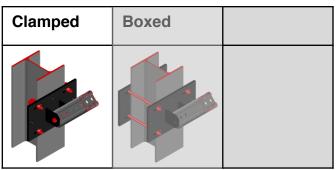

Beam clamps


4x MI-SGC M12 233859


Combinations covered by loading case

Connector used for an angled connection of MIQ-90 to structural steel profiles (bracing).

Recommended loading capacity - simplified for most common applications Method \pm Fy,rec. [kN] 2.15 90° 18.30 6.92 5.49 4.66 [kN]

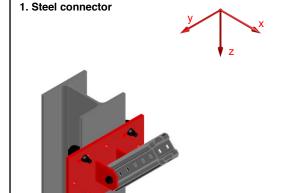


Installation Technical Manual - Technical Data - MIQ system

MIC-SA-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



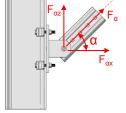
Design loading capacity - 3D

2/3

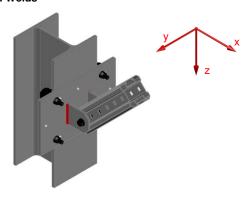
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


		-		-	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
58.60	73.93	3.22	3.22	37.13	37.13
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.81	1.81	2.60	2.60	0.23	0.23

includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities:


Interaction:

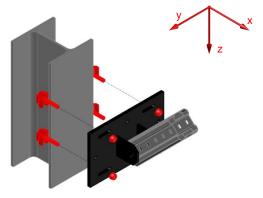
with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{-} = F_{-} = F_{-} = A^* e_{-}$ $\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

$$\begin{aligned} \text{with:} \ \ & \mathbf{e_{x}} = \mathbf{0.07m} \\ & F_{x.Ed.\alpha} = F_{\alpha}^{*} \mathbf{cos} \alpha \\ & F_{z.Ed.\alpha} = F_{\alpha}^{*} \mathbf{sin} \alpha \rightarrow \mathbf{M_{y.Ed.\alpha}} = F_{z.Ed.\alpha}^{*} \mathbf{e_{x}} \\ & \mathbf{M_{z.Ed}} = F_{y.Ed}^{*} \mathbf{e_{x}} \\ & \frac{\mathbf{M_{y.Ed.\alpha}}}{\mathbf{M_{y.Rd}}} + \frac{\mathbf{M_{z.Ed}}}{\mathbf{M_{z.Rd}}} \leq 1 \end{aligned}$$

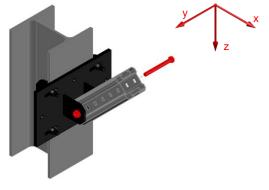

Page 5/8

MIC-SA-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

3. Beam clamps


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.81	0.81	2.07	2.07	1.39	1.39

Interaction:

$$\begin{split} & \text{with: } e_x = 0.07m \\ & F_{x.Ed,\alpha} = F_\alpha^* cos \alpha \\ & F_{z.Ed,\alpha} = F_\alpha^* sin \alpha -> M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x \\ & M_{z.Ed} = F_{y.Ed}^* e_x \end{split}$$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

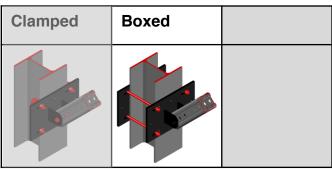
4. Hexagonal bolt in MIQ-girder

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.34	1.34	0.00	0.00	0.00	0.00

Interaction:

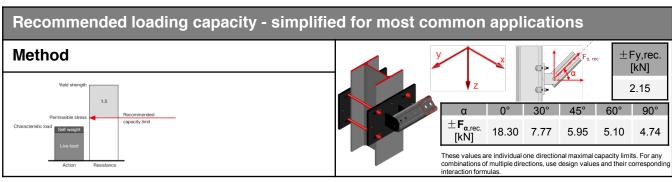
 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

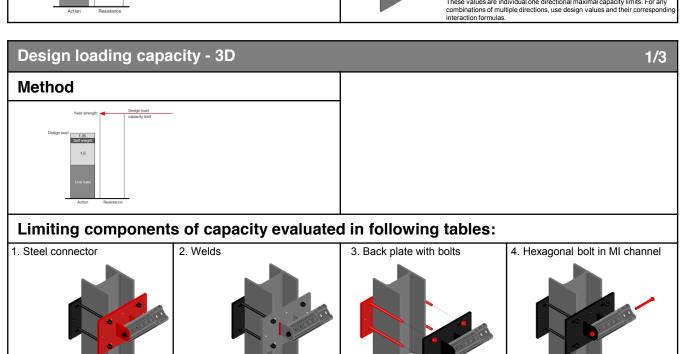
The normal force F_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd}$


$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

8x M12-F-SL WS3/4

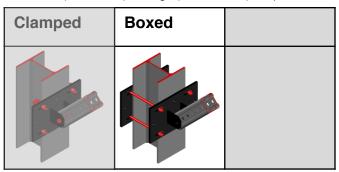
Data version 1.2 I Date 11.2016


Page 6/8


MIC-SA-MA Base Material Connector - Steel

382897

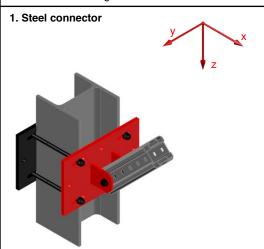
Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to structural 1x MIC-SA-MA 304815 steel profiles Base plate 1x MIB-SA 304821 (bracing). Threaded rods cut to particular length For flange width 4x AM12x1000 8.8 HDG...m 419103 75-165mm.



MIC-SA-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

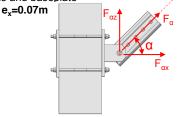
2/3

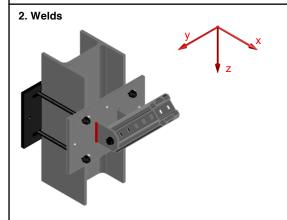
Page 7/8

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


				•	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
58.60	73.93	3.22	3.22	37.13	37.13
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.81	1.81	2.60	2.60	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities:

Interaction:

with ex = horizontal eccentricity between hexagonal bolt axis and baseplate

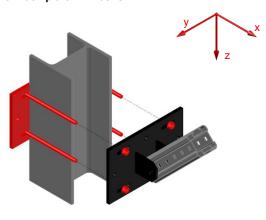
$$\begin{split} & \textbf{F}_{\textbf{x}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha} ^{\textbf{*}} \textbf{cos} \textbf{Q} \\ & \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha} ^{\textbf{*}} \textbf{sin} \textbf{Q} \rightarrow \textbf{M}_{\textbf{y}.\textbf{Ed},\alpha} = \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha} ^{\textbf{*}} \textbf{e}_{\textbf{x}} \\ & \textbf{M}_{\textbf{z}.\textbf{Ed}} = \textbf{F}_{\textbf{y}.\textbf{Ed}} ^{\textbf{*}} \textbf{e}_{\textbf{x}} \\ & \frac{\textbf{F}_{\textbf{x}.\textbf{Ed},\alpha}}{\textbf{F}_{\textbf{x}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{x}.\textbf{Ed}}}{\textbf{M}_{\textbf{x}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{y}.\textbf{Ed},\alpha}}{\textbf{M}_{\textbf{y}.\textbf{Rd}}} + \frac{\textbf{M}_{\textbf{z}.\textbf{Ed}}}{\textbf{M}_{\textbf{z}.\textbf{Rd}}} \leq 1 \end{split}$$

_						
	+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
	274.92	274.92	224.47	224.47	224.47	224.47
	+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
	10.89	10.89	3.09	3.09	13.33	13.33

with: $e_x = 0.07m$ Interaction: $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

 $F_{z.Ed.\alpha} = F_{\alpha}^* sin\alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{v.Ed}^* e_x$

F_{y.Rd} F_{z.Rd} M_{x.Rd} M_{v.Rd}


Page 8/8

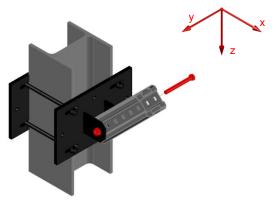
MIC-SA-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	56.07	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.67	0.67	11.56	11.56	7.77	7.77

Interaction::


with: $e_x = 0.07m$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

 $\begin{aligned} & F_{z,Ed,\alpha} = F_{\alpha}{}^*sin\alpha \rightarrow M_{y,Ed,\alpha} = F_{z,Ed,\alpha}{}^*e_x \\ & M_{z,Ed} = F_{y,Ed}{}^*e_x \end{aligned}$

$$\frac{F_{X.Ed.\alpha}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

4. Hexagonal bolt in MIQ-girder

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.34	1.34	0.00	0.00	0.00	0.00

Interaction:

 $\textbf{F}_{\alpha Rd}$ = $\textbf{F}_{\textbf{x}Rd}$ = $\textbf{F}_{\textbf{z}Rd}$ The resistance $\textbf{F}_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \le 1$$

Page 1/8

MIC-SB-MA Base Material Connector - Steel

Designation	Item number
MIC-SB-MA	304816

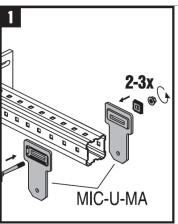
Corrosion protection:

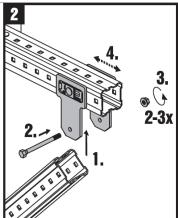
Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

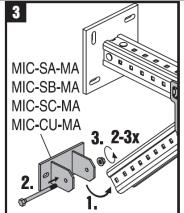
Weight:

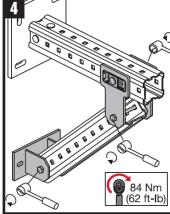
7740 g incl. components

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MIQ-90 girder to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	f = 235 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y - 233}{\text{mm}^2}$	$\frac{1}{m} = 300 \frac{1}{mm^2}$	mm ²	$\frac{G - 80709}{\text{mm}^2}$

Instruction For Use:

The same assembly principles and torque moments should be applied for MIQ girders

Page 2/8

MIC-SB-MA Base Material Connector - Steel

Possible loading cases				
Clamped Boxed				

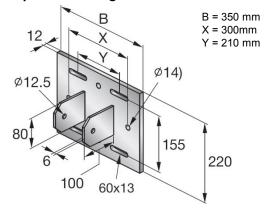
Design criteria used for loading capacity

Methodology:

Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012

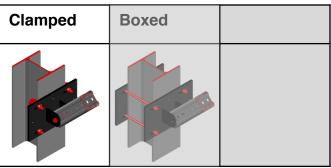

Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:

- indoors, outdoors
- static loads
- no fatigue loads

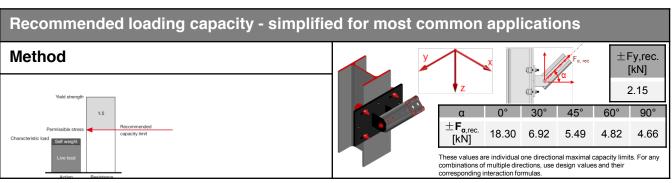
Simplified drawing:

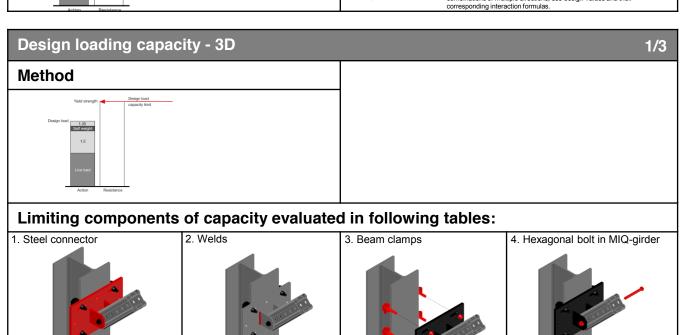


4x MI-SGC M12

Data version 1.2 I Date 11.2016

Page 3/8

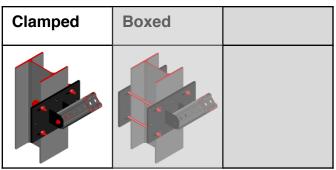

MIC-SB-MA Base Material Connector - Steel



233859

Loading case: Clamped Combinations covered by loading case BOM: Connector used for an angled connection Connector incl. all associated of MI-90 to components structural steel profiles MIC-SB-MA 304816 Beam clamps (bracing).

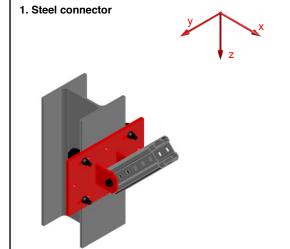
For flange width 165-235mm.



MIC-SB-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

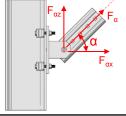


Design loading capacity - 3D

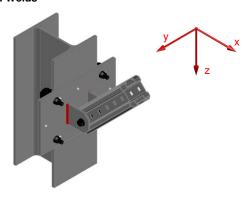
2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

		-		-	
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
43.19	50.50	3.22	3.22	23.25	23.25
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.13	1.13	1.63	1.63	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $\frac{F_{X,Ed,\alpha}}{F_{X,Rd}} + \frac{M_{y,Ed,\alpha}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

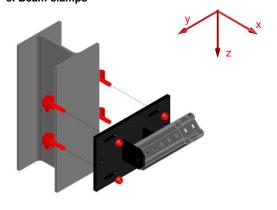
with:
$$e_x = 0.07m$$

$$F_{x.Ed,\alpha} = F_{\alpha}^* cos\Omega$$

$$F_{z.Ed,\alpha} = F_{\alpha}^* sin\Omega \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x$$

$$M_{z.Ed} = F_{y.Ed}^* e_x$$

$$\frac{F_{X.Ed.\alpha}}{F_{X.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

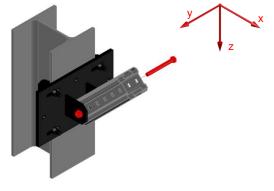

Page 5/8

MIC-SB-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.06	1.06	2.07	2.07	2.80	2.80


Interaction:

with:
$$e_x = 0.07m$$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

$$F_{z.Ed.\alpha} = F_{\alpha}^* \sin \alpha \rightarrow M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$$

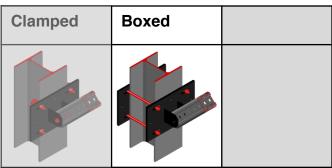
 $M_{z.Ed} = F_{y.Ed}^* e_x$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

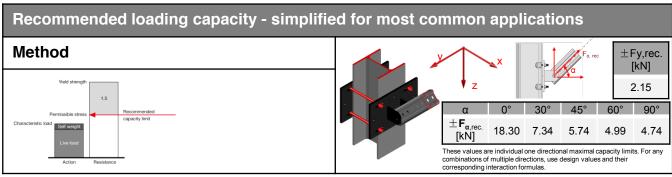
4. Hexagonal bolt in MIQ-girder

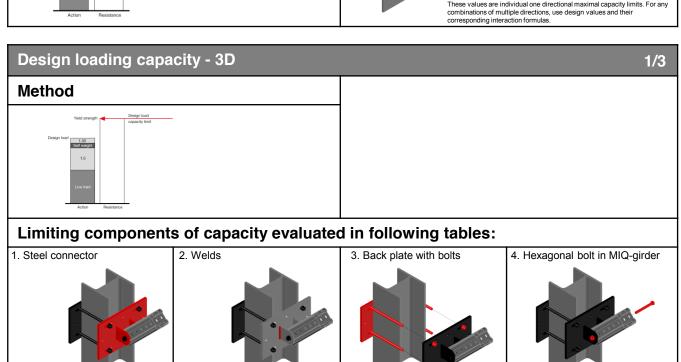
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
1.34	1.34	0.00	0.00	0.00	0.00

Interaction:


 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

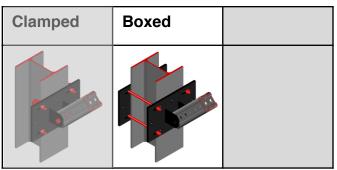
The normal force F_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd.}$


$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$


Page 6/8

MIC-SB-MA Base Material Connector - Steel

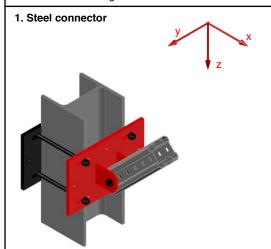
Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to structural 1x MIC-SB-MA 304816 steel profiles Base plate 1x MIB-SB 304822 (bracing). Threaded rods cut to particular length For flange width 4x AM12x1000 8.8 HDG...m 419103 165-235mm. 8x M12-F-SL WS3/4 382897



MIC-SB-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures



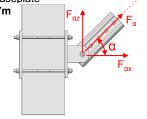
Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
43.19	50.50	3.22	3.22	23.25	23.25
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.13	1.13	1.63	1.63	0.23	0.23

includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities:

Interaction:

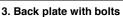
with ex = horizontal eccentricity between hexagonal bolt axis and baseplate e_x=0.07m

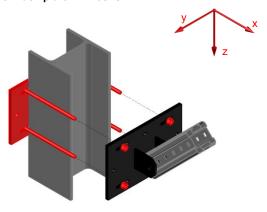
$$\begin{aligned} & \textbf{F}_{\textbf{x}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha}^{\, \star} \textbf{cos} \boldsymbol{\alpha} \\ & \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha} = \textbf{F}_{\alpha}^{\, \star} \textbf{sin} \boldsymbol{\alpha} \rightarrow \textbf{M}_{\textbf{y}.\textbf{Ed},\alpha} = \textbf{F}_{\textbf{z}.\textbf{Ed},\alpha}^{\, \star} \textbf{e}_{\textbf{x}} \\ & \textbf{M}_{\textbf{z}.\textbf{Ed}} = \textbf{F}_{\textbf{y}.\textbf{Ed}}^{\, \star} \textbf{e}_{\textbf{x}} \\ & \frac{F_{\textbf{x}}.\textbf{Ed},\alpha}{F_{\textbf{x}}.\textbf{Rd}} + \frac{M_{\textbf{y}}.\textbf{Ed},\alpha}{M_{\textbf{y}}.\textbf{Rd}} + \frac{M_{\textbf{z}}.\textbf{Ed}}{M_{\textbf{x}}.\textbf{Rd}} + \frac{M_{\textbf{x}}.\textbf{Ed}}{M_{\textbf{x}}.\textbf{Rd}} \leq 1 \end{aligned}$$

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.89	10.89	3.09	3.09	13.33	13.33

with: $e_x = 0.07m$ Interaction:

$$\begin{aligned} & F_{x.Ed,\alpha} = F_{\alpha}^* cos\alpha \\ & F_{z.Ed,\alpha} = F_{\alpha}^* sin\alpha -> M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x \\ & M_{z.Ed} = F_{y.Ed}^* e_x \end{aligned}$$


$$\frac{F_{x.Ed,\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed,\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed,\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

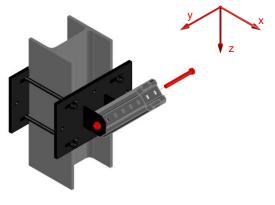

Page 8/8

MIC-SB-MA Base Material Connector - Steel

Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	42.26	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.88	0.88	11.56	11.56	15.64	15.64


Interaction::

with:
$$e_x = 0.07m$$

 $F_{x.Ed.\alpha} = F_{\alpha} cos \alpha$

$$\begin{aligned} & F_{z.Ed,\alpha} = F_{\alpha} ^* sin \alpha \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha} ^* e_x \\ & M_{z.Ed} = F_{y.Ed} ^* e_x \end{aligned}$$

$$\frac{F_{\text{X.Ed},\alpha}}{F_{\text{X.Rd}}} + \frac{F_{\text{y.Ed}}}{F_{\text{y.Rd}}} + \frac{F_{\text{z.Ed},\alpha}}{F_{\text{z.Rd}}} + \frac{M_{\text{X.Ed}}}{M_{\text{X.Rd}}} + \frac{M_{\text{y.Ed},\alpha}}{M_{\text{y.Rd}}} + \frac{M_{\text{z.Ed}}}{M_{\text{z.Rd}}} \le 1$$

4. Hexagonal bolt in MI channel

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.34	1.34	0.00	0.00	0.00	0.00

Interaction:

 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}

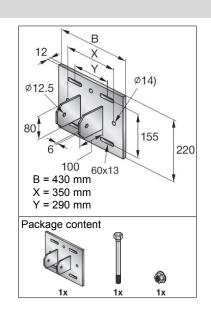
$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Page 1/8

MIC-SC-MA Base Material Connector - Steel

Designation	Item number
MIC-SC-MA	304817

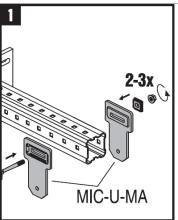
Corrosion protection:

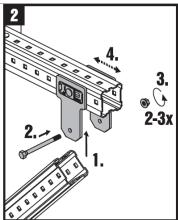

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 microns

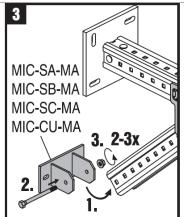
Weight:

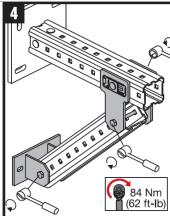
9400 g incl. components

Submittal text:


Hilti Hot-dipped galvanized baseplate connector, typically used for anchoring an MI-90 and MIQ-90 girders to a steel beam in an angle, usually when it's used as a brace for another girder. Four oblong anchor holes enable fine tuning of baseplate position, and girder is connected using one bolt through a hole, which enables various angles.




Material properties:


Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S235JR -	t - 225 N	f., = 360 N	E = 210000 N	G = 80769 N
DIN EN 10025	$\frac{1_y}{mm^2}$	$\frac{1}{m} = 300 \frac{mm^2}{mm^2}$	$\frac{L - 210000}{\text{mm}^2}$	$\frac{G - 80709}{\text{mm}^2}$

Instruction For Use:

The same assembly principles and torque moments should be applied for MIQ girders

Page 2/8

MIC-SC-MA Base Material Connector - Steel

Possible loading cases				
Clamped				

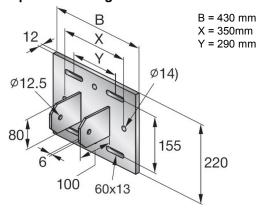
Design criteria used for loading capacity

Methodology:

Analytic calculation

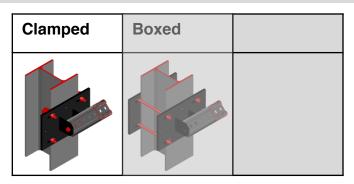
Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures –Part 1-1: General actions	
		 densities, self-weight, imposed loads for buildings 	03.2012
•	EN 1993-1-1	Eurocode 3: Design of steel structures –Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures –Part 1-3: General rules-	
		Supplementary rules for cold-formed members and sheeting	09.2010
•	EN 1993-1-5	Eurocode 3: Design of steel structures –Part 1-5:Plated	
		structural elements	06.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures –Part 1-8: Design	
		of joints	03.2012


Software:

- Mathcad 15.0
- Microsoft Excel

Environmental conditions:


- indoors, outdoors
- static loads
- no fatigue loads

Simplified drawing:

Page 3/8

MIC-SC-MA Base Material Connector - Steel

Loading case: Clamped

BOM:

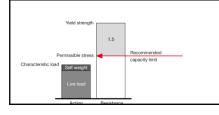
Connector incl. all associated

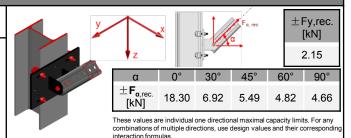
components

MIC-SC-MA 304817

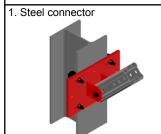
Beam clamps

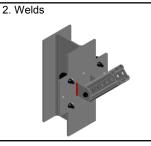
4x MI-SGC M12 233859

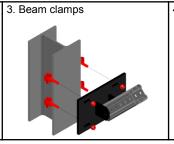

Combinations covered by loading case

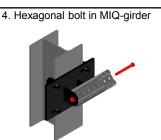

Connector used for an angled connection of MI-90 to structural steel profiles (bracing). For flange width 235-300mm.

Recommended loading capacity - simplified for most common applications

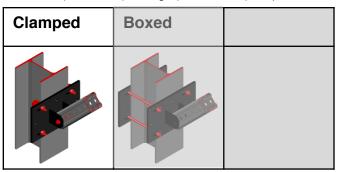

Method






Design loading capacity - 3D 1/3 Method

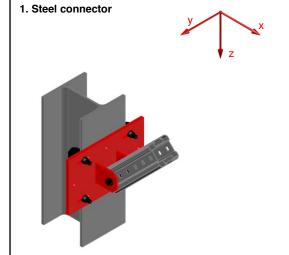
Limiting components of capacity evaluated in following tables:



MIC-SC-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

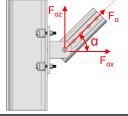


Design loading capacity - 3D

2/3

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
34.47	38.38	3.22	3.22	15.78	15.78
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.77	0.77	1.10	1.10	0.23	0.23


includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:

> with ex = horizontal eccentricity between hexagonal bolt axis and baseplate $e_x = 0.07 m$

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $\mathbf{M}_{\mathsf{z}.\mathsf{Ed}} = \mathbf{F}_{\mathsf{y}.\mathsf{Ed}} \mathbf{e}_{\mathsf{x}}$ $\frac{F_{X.Ed.\alpha}}{F_{X.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$

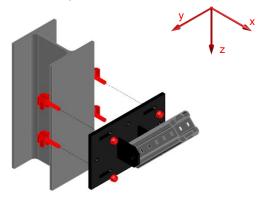
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
10.89	10.89	3.09	3.09	13.33	13.33

Interaction:

with:
$$e_x = 0.07m$$

 $F_{x.Ed,\alpha} = F_{\alpha}^* cos\Omega$
 $F_{z.Ed,\alpha} = F_{\alpha}^* sin\Omega \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x$
 $M_{z.Ed} = F_{y.Ed}^* e_x$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$


MIC-SC-MA Base Material Connector - Steel

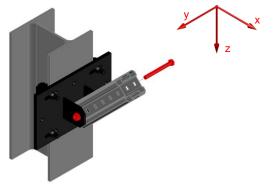
Design loading capacity - 3D

3/3

Page 5/8

3. Beam clamps

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.80	Not decisive	9.00	9.00	9.00	9.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.31	1.31	2.07	2.07	4.51	4.51


Interaction:

with: $e_x = 0.07m$ $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$

 $M_{z.Ed} = F_{y.Ed}^* e_x$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \leq 1$$

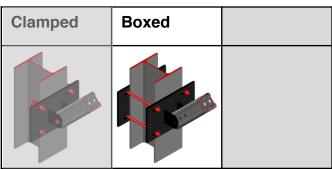
4. Hexagonal bolt in MIQ-girder

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.34	1.34	0.00	0.00	0.00	0.00

Interaction:

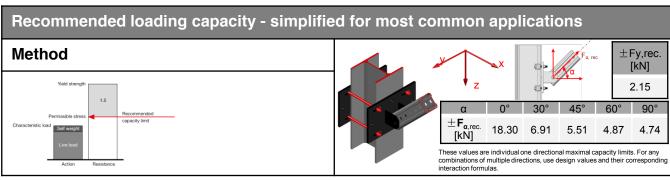
 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α in plane x/z, therefore no interaction.

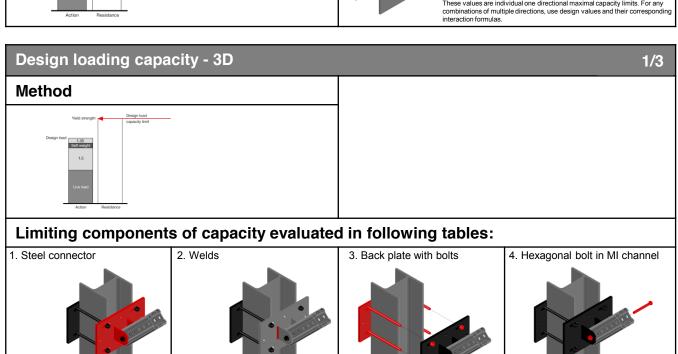
The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value F_{αRd.}


$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

8x M12-F-SL WS3/4

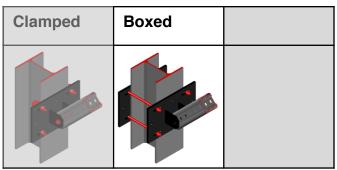
Data version 1.2 I Date 11.2016


Page 6/8


MIC-SC-MA Base Material Connector - Steel

382897

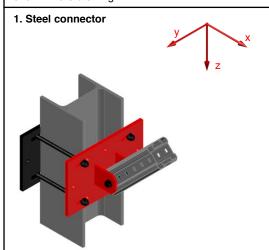
Loading case: Boxed Combinations covered by loading case BOM: Connector used for Connector incl. all associated an angled connection components of MI-90 to 1x MIC-SC-MA 304817 structural steel Base plate 1x MIB-SC 304823 profiles (bracing). Threaded rods cut to particular length For flange width 4x AM12x1000 8.8 HDG...m 419103 235-300mm.



MIC-SC-MA Base Material Connector - Steel

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

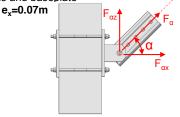


Design loading capacity - 3D

2/3

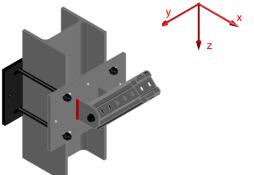
Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.


The values for Mx, My and Mz take into account the eccentricity between load application at hexagonal bolt axis and baseplate.

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
34.47	38.38	3.22	3.22	15.78	15.78
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.77	0.77	1.10	1.10	0.23	0.23

includes cross section resistance of steel base plate and the two flange plates Interaction for a general force $F\alpha$ in plain x/z with a certain inclination α and a force Fy considering their eccentricities: Interaction:


> with ex = horizontal eccentricity between hexagonal bolt axis and baseplate

 $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $F_{z.Ed.\alpha} = F_{\alpha}^* sin \alpha -> M_{y.Ed.\alpha} = F_{z.Ed.\alpha}^* e_x$ $M_{z.Ed} = F_{y.Ed}^* e_x$ $\frac{F_{x,Ed,\alpha}}{F_{x,Rd}} + \frac{M_{y,Ed,\alpha}}{M_{y,Rd}} + \frac{M_{z,Ed}}{M_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$

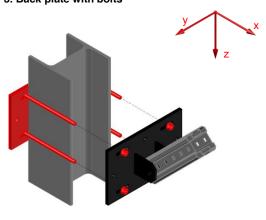
2. Welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
274.92	274.92	224.47	224.47	224.47	224.47
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
10.89	10.89	3.09	3.09	13.33	

Interaction:

with: $e_x = 0.07m$ $F_{x.Ed.\alpha} = F_{\alpha}^* cos \alpha$ $\begin{aligned} & F_{z.Ed,\alpha} = F_{\alpha}^* sin\alpha \rightarrow M_{y.Ed,\alpha} = F_{z.Ed,\alpha}^* e_x \\ & M_{z.Ed} = F_{y.Ed}^* e_x \end{aligned}$

$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le$$


Page 8/8

MIC-SC-MA Base Material Connector - Steel

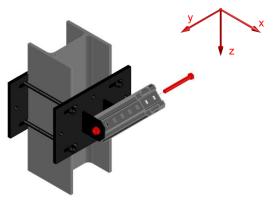
Design loading capacity - 3D

3/3

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
194.23	33.10	7.42	7.42	7.42	7.42
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.08	1.08	11.56	11.56	25.15	25.15

Interaction::

with: $e_x = 0.07m$


 $\mathbf{F}_{\mathsf{x.Ed.}\alpha} = \mathbf{F}_{\alpha}{}^* \mathbf{cos} \mathbf{\Omega}$

 $\mathbf{F}_{\mathbf{z}.\mathbf{Ed}.\alpha} = \mathbf{F}_{\alpha}^{*} \mathbf{sin} \mathbf{\Omega} \rightarrow \mathbf{M}_{\mathbf{y}.\mathbf{Ed}.\alpha} = \mathbf{F}_{\mathbf{z}.\mathbf{Ed}.\alpha}^{*} \mathbf{e}_{\mathbf{x}}$

 $M_{z.Ed} = F_{y.Ed}^* e_x$

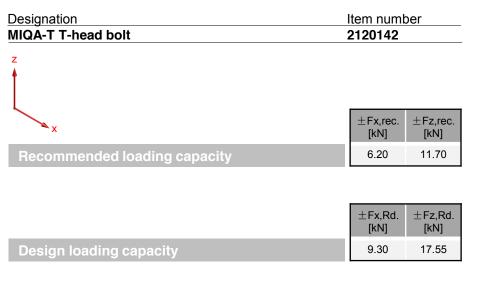
$$\frac{F_{x.Ed.\alpha}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed.\alpha}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} + \frac{M_{y.Ed.\alpha}}{M_{y.Rd}} + \frac{M_{z.Ed}}{M_{z.Rd}} \le 1$$

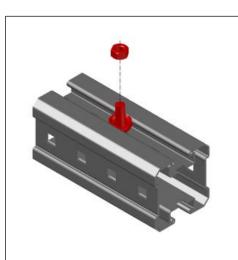
4. Hexagonal bolt in MIQ-girder

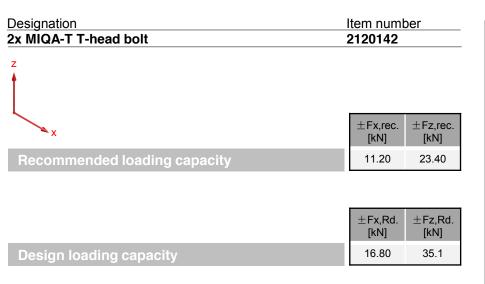
+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
27.45	27.45	Not decisive	Not decisive	27.45	27.45
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
1.34	1.34	0.00	0.00	0.00	0.00

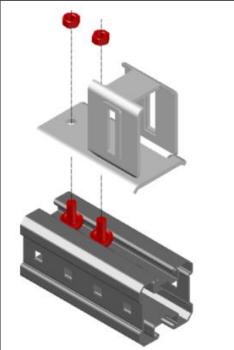
Interaction:

 $F_{\alpha Rd} = F_{xRd} = F_{zRd}$ The resistance $F_{\alpha Rd}$ of the hexagon bolt is the same for each angle α

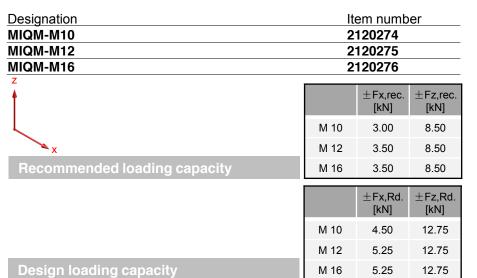

The normal force \boldsymbol{F}_{α} in the inclined strut has to be compared with the resistance value $F_{\alpha Rd.}$

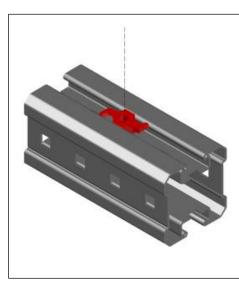

$$\frac{F_{\alpha.Ed}}{F_{\alpha.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$



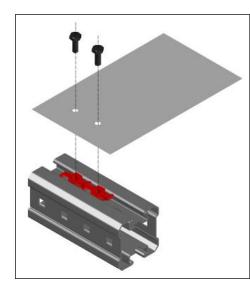

Page 1/1

MIQA-T T-head bolt - accessories





Page 1/1


MIQM-M wing nut - accessories

Designation	item number				
2x MIQM-M10	2120274				
2x MIQM-M12	2120275				
2x MIQM-M16	2120276				
Z					
†		±Fx,rec. [kN]	±Fz,rec. [kN]		
	M 10	5.40	17.00		
×	M 12	6.30	17.00		

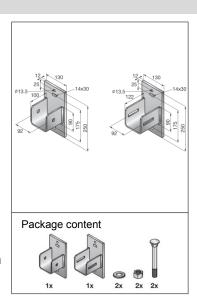
X	M 12	6.30	17.00
Recommended loading capacity	M 16	6.30	17.00
		±Fx,Rd. [kN]	±Fz,Rd. [kN]
	M 10	8.10	25.50
	M 12	9.45	25.50
Design loading capacity	M 16	9.45	25.50

Page 1/6

MIC-C90-EDB elevator connector

Designation	Item number
MIC-C90-EDB elevator connector	2149279

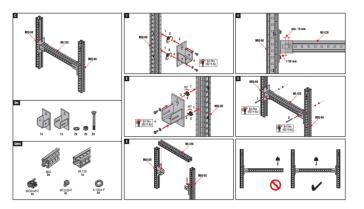
Corrosion protection:

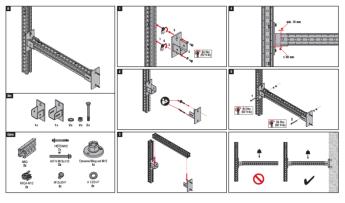

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

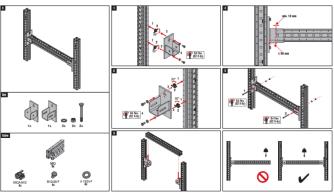
Weight:

9434g incl. accessories

Submittal text:

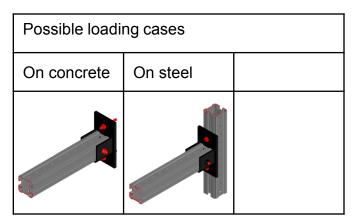

Hot-dipped galvanised Hilti elevator connector, used primarily to connect an MI or MIQ girder to either a concrete wall or another girder. The baseplate of the connector is fastened to concrete through anchor holes with Hilti HST3 anchors or similar, and with MIA-OH bolts to another girder, secured with two self-locking nuts. Sold as a pair of connectors, one with a single hole and the other with an oblong hole, through which the connector is fastened to the girder with MIA-OH through-bolts. Material weight 9.43kg including all items.




Material properties:

Material	Yield strength	Ultimate strength	E-modulus	Shear modulus
S355 JR	$F_y = 355 \frac{N}{mm^2}$	$F_{u} = 490 \frac{N}{mm^{2}}$	$E = 210000 \frac{N}{mm^2}$	G = 80769 $\frac{N}{mm^2}$
DIN FN 10025	110110	Titill	nene	Titill .

Instruction For Use:



Page 2/6

MIC-C90-EDB elevator connector

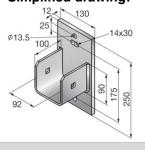
Design criteria used for loading capacity

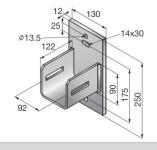
Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

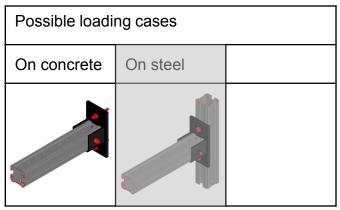

Software:

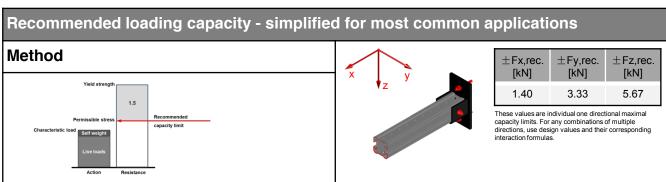

- Ansys 16.0
- Microsoft Excel
- Analytic calculation

Environmental conditions:

- static loads
- no fatigue loads

Simplified drawing:

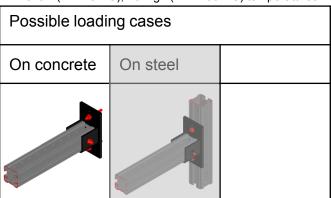



Page 3/6

Data version 1.2 I Date 11.2016

MIC-C90-EDB elevator connector

Loading case: On concrete	Combinations covered by loading case
Base material connector incl. all connectivity material 1x MIC-C90-EDB elevator connector 2149279	Connector used for fixing MIQ girder, perpendicularly to concrete usually as divider beam (wall to wall) in elevator shaft



MIC-C90-EDB elevator connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

Design loading capacity - 3D

2/2

Page 4/6

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. MIC-C90-EDB Slotted connector incl. bolt, base plate and weld

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	5.00**	5.00**	5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.07	0.07	0.00	0.00	0.00	0.00

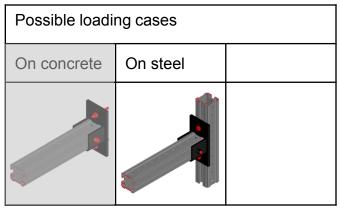
^{**}Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

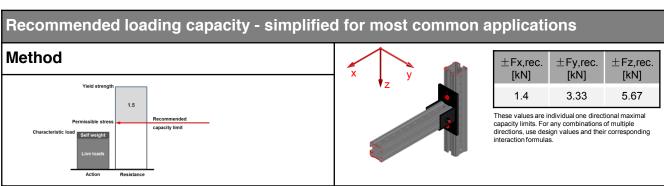
Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above.

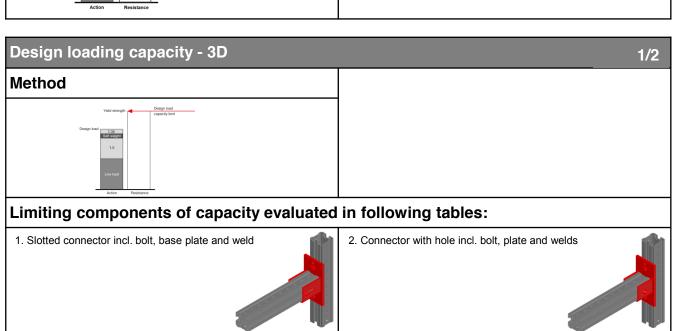
2. MIC-C90-EDB Connector with hole incl. bolt, plate and welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
10.60	10.60	5.00**	5.00**	5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.07	0.07	0.00	0.00	0.00	0.00


Values are provided for 1mm local deflection on connector **Interaction:

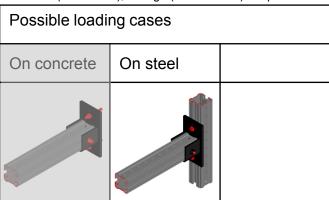
$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$


Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above



MIC-C90-EDB elevator connector

Loading case: On steel	Combinations covered by loading case	
BOM: Base material connector incl. all connectivity material 1x MIC-C90-EDB elevator connector Connection to vertical MIQ girder 2x MIQM-M12 wing nut 2120275 2x M12x30-F hex. Head screw 284387	Connector used for fixing MIQ girder, perpendicularly to other MIQ vertical girder usually as divider beam (wall to wall) in elevator shaft	

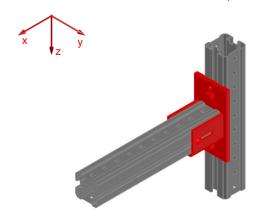


Page 6/6

MIQC-S90-BP base material connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

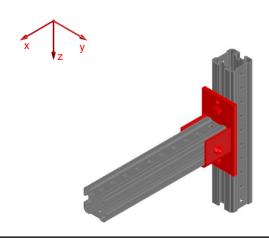

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. MIC-C90-EDB Slotted connector incl. bolt, base plate and weld


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	5.00**	5.00**	5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.07	0.07	0.00	0.00	0.00	0.00

^{**}Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.\,Ed}}{F_{x.\,Rd}} + \frac{F_{y.\,Ed}}{F_{y.\,Rd}} + \frac{F_{z\,\,Ed}}{F_{z\,\,Rd}} + \frac{M_{x.\,Ed}}{M_{x.\,Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

2. MIC-C90-EDB Connector with hole incl. bolt, plate and welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
10.60	10.60	5.00**	5.00**	5.00	5.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.07	0.07	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector

$$\frac{F_{x.\,Ed}}{F_{x.\,Rd}} + \frac{F_{y.\,Ed}}{F_{y.\,Rd}} + \frac{F_{z\,\,Ed}}{F_{z\,\,Rd}} + \frac{M_{x.\,Ed}}{M_{x.\,Rd}} \leq 1$$

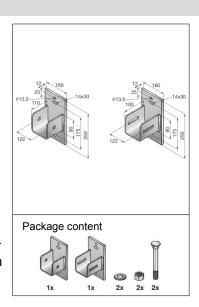
Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

Page 1/6

MIC-C120-EDB elevator connector

Designation	Item number
MIC-C120-EDB elevator connector	2149420

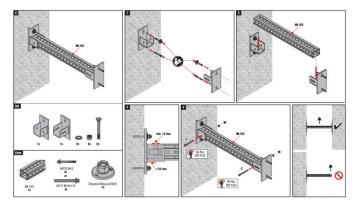
Corrosion protection:

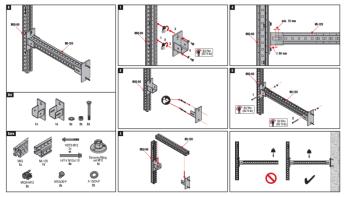

Hot dipped galvanized as per DIN EN ISO 1462, thickness 55 micr ons

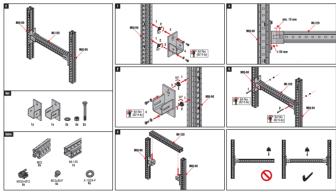
Weight:

11043g incl. accessories

Submittal text:


Hot-dipped galvanised Hilti elevator connector, used primarily to connect an MI or MIQ girder to either a concrete wall or another girder. The baseplate of the connector is fastened to concrete through anchor holes with Hilti HST3 anchors or similar, and with MIA-OH bolts to another girder, secured with two self-locking nuts. Sold as a pair of connectors, one with a single hole and the other with an oblong hole, through which the connector is fastened to the girder with MIA-OH through-bolts. Material weight 11.04kg including all items.




Material properties: Shear modulus E-modulus Material Yield strength Ultimate strength $F_y = 355 \frac{N}{mm^2}$ $F_u = 490 \frac{N}{mm^2}$ $E = 210000 \frac{N}{mm^2}$ G = 80769 $\frac{N}{mm^2}$ S355 JR

Instruction For Use:

DIN EN 10025

Page 2/6

Data version 1.2 I Date 11.2016

MIC-C120-EDB elevator connector

Possible loading cases				
On concrete On steel				

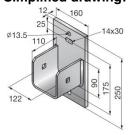
Design criteria used for loading capacity

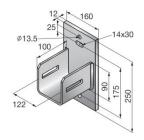
Methodology:

- Finite element analysis
- Analytic calculation

Standards and codes:

_			
•	EN 1990	Basics of structural design	03.2003
•	EN 1991-1-1	Eurocode 1: Actions on structures – Part 1-1: General	
		actions – densities, self-weight, imposed loads for buildings	09.2011
•	EN 1993-1-1	Eurocode 3: Design of steel structures – Part 1-1: General	
		rules and rules for buildings	03.2012
•	EN 1993-1-3	Eurocode 3: Design of steel structures – Part 1-3: General	
		rules- Supplementary rules for cold-formed members and	
		sheeting	03.2012
•	EN 1993-1-5	Eurocode 3: Design of steel structures – Part 1-5: Plated	
		structural elements	03.2012
•	EN 1993-1-8	Eurocode 3: Design of steel structures – Part 1-8: Design of	
		joints	03.2012
	EN 10025-2	Hot rolled products of structural steels- Part 2: technical	
		delivery conditions for non-alloy structural steels	02.2005
•	RAL-GZ 655	Pipe Supports	04.2008

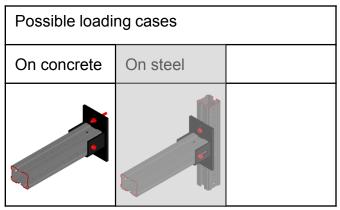

Software:


- Ansys 16.0
- Microsoft Excel
- Analytic calculation

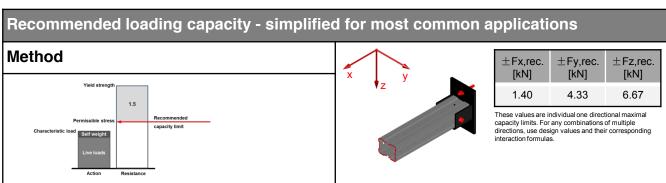
Environmental conditions:

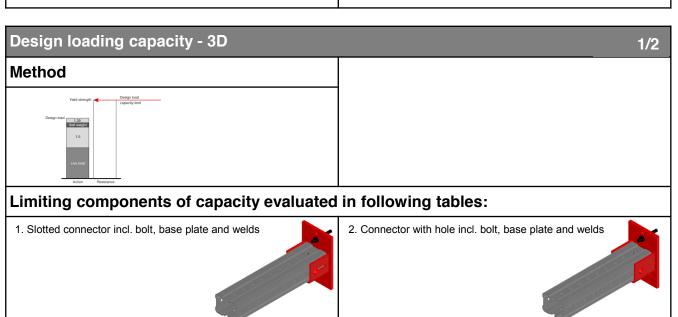
- static loads
- no fatigue loads

Simplified drawing:



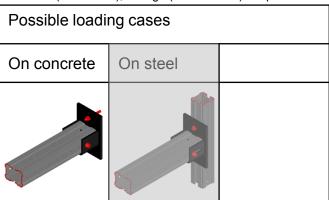
Page 3/6




Data version 1.2 I Date 11.2016

MIC-C120-EDB elevator connector

Loading case: On concrete	Combinations covered by loading case		
BOM: Base material connector incl. all connectivity material MIC-C120-EDB elevator connector 2149420	Connector used for fixing MIQ girder, perpendicularly to concrete usually as divider beam (wall to wall) in elevator shaft		

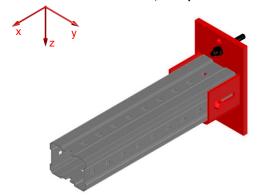

Page 4/6

Data version 1.2 I Date 11.2016

MIC-C120-EDB elevator connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures


Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Slotted connector incl. bolt, base plate and welds

+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	6.50**	6.50**	10.00	10.00
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z\,Ed}}{F_{z\,Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

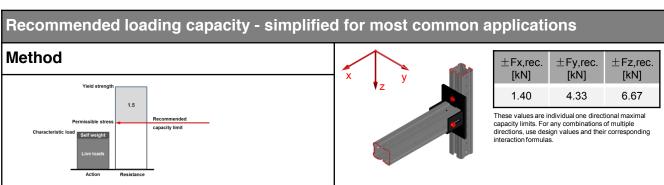
2. Connector with hole incl. bolt, base plate and welds

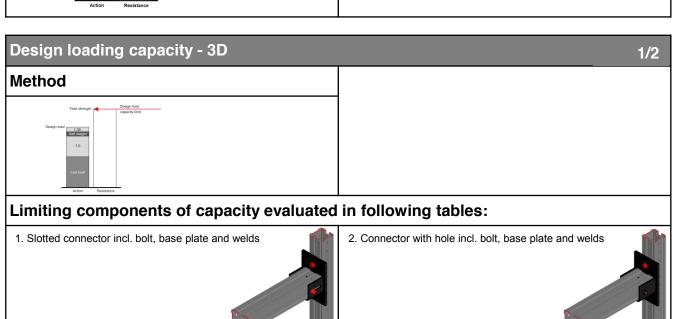
+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
14.00	14.00	6.50**	6.50**	10.00	10.00
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z.Ed}}{F_{z.Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

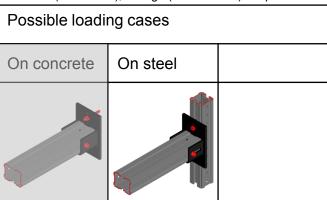
Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above


Page 5/6


Data version 1.2 I Date 11.2016

MIC-C120-EDB elevator connector

Loading case: On steel	Combinations covered by loading case	
BOM: Base material connector incl. all connectivity material MIC-C120-EDB elevator connector 2149420 Connection to vertical MIQ girder 2x MIQM-M12 wing nut 2120275 2x M12x30-F hex. Head screw 284387	Connector used for fixing MI-120 girder, perpendicularly to other MIQ vertical girder usually as divider beam (wall to wall) in elevator shaft	

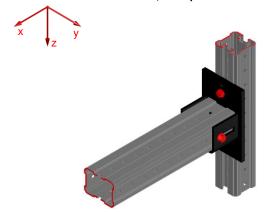


Page 6/6

MIC-C120-EDB elevator connector

Conditions of the loading capacity tables:

- Just for static loads
- No fatigue loads
- No low (< -10 $^{\circ}$ C), no high (> +100 $^{\circ}$ C) temperatures

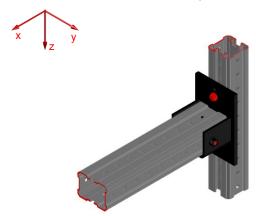

Design loading capacity - 3D

2/2

Summary of design loads*

NOTE: all values in interaction formulas should be used in absolute values! The values below are referred to the coordinate system shown in the drawing.

1. Slotted connector incl. bolt, base plate and welds


+Fx,Rd	-Fx,Rd	+Fy,Rd	-Fy,Rd	+Fz,Rd	-Fz,Rd
[kN]	[kN]	[kN]	[kN]	[kN]	[kN]
2.10	2.10	5.00**	5.00**	8.50	8.50
+Mx,Rd	-Mx,Rd	+My,Rd	-My,Rd	+Mz,Rd	-Mz,Rd
[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x,Ed}}{F_{x,Rd}} + \frac{F_{y,Ed}}{F_{y,Rd}} + \frac{F_{z,Ed}}{F_{z,Rd}} + \frac{M_{x,Ed}}{M_{x,Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

2. Connector with hole incl. bolt, base plate and welds

+Fx,Rd [kN]	-Fx,Rd [kN]	+Fy,Rd [kN]	-Fy,Rd [kN]	+Fz,Rd [kN]	-Fz,Rd [kN]
10.60	10.600	5.00**	5.00**	8.50	8.50
+Mx,Rd [kNm]	-Mx,Rd [kNm]	+My,Rd [kNm]	-My,Rd [kNm]	+Mz,Rd [kNm]	-Mz,Rd [kNm]
0.10	0.10	0.00	0.00	0.00	0.00

**Values are provided for 1mm local deflection on connector Interaction:

$$\frac{F_{x.Ed}}{F_{x.Rd}} + \frac{F_{y.Ed}}{F_{y.Rd}} + \frac{F_{z\,Ed}}{F_{z\,Rd}} + \frac{M_{x.Ed}}{M_{x.Rd}} \leq 1$$

Note: The welds and the one hand screw are modelled appropriately in the FE- calculation and are therefore included in the overall resistance for connector given above

