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POST-EARTHQUAKE FIRE RISK:
A POTENTIALLY HIGHLY IMPACTING PHENOMENON
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P.B. Julia et al. “Post-earthquake fire risk assessment of historical urban areas: A scenario-based analysis
applied to the Historical Cicy Centre of Leiria, Portugal» (2021)

=T




THE ROLE OF NON-STRUCTURAL COMPONENTS IN FIRE
IGNITION

A building exposed to strong ground motions, depending on its structural and occupancy

type, could generate various sources of potential ignitions due to non-structural

elements:

1. Damages to building utility networks such as
gas and electricity due to structural damage
or excessive structural deformation.

2. Disruptions and damages to ignitable
nonstructural component and braced
contents and equipment due to structural
damages.

3. Overturning of flammable and ignitable
unbraced hazardous contents and &
equipment due to floor accelerations |
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WHAT ABOUT SPRINKLER PIPING SYSTEMS?
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WHAT ABOUT SPRINKLER PIPING SYSTEMS?

Miranda E, Mosqueda G, Retamales R, Pekcan G (2012) Performance of nonstructural components during the February 27, 2010 Chile Earthquake. Earthq Spectra 28(51):5453-5471
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WHAT ABOUT SPRINKLER PIPING SYSTEMS?

Main sources of seismic vulnerability in fire sprinkler piping systems:

Piping joints Sway bracing systems Firestopping
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PERFORMANCE BASED SEISMIC DESIGN NON-STRUCTURAL
ELEMENTS: FOCUS ON SPRINKLER PIPING SYSTEMS
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SEISMIC RESPONSE OF PIPING JOINTS
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Tian Y, Filiatrault A, Mosqueda G. (2014) Experimental Seismic Fragility of pressurized fire suppression sprinkler piping joints. Earthquake Spectra 30(4).
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SEISMIC RESPONSE OF PIPING JOINTS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS

EUCENTRE-HILTI Collaborative research project
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT

INSTALLATIONS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT

INSTALLATIONS
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS

Definition of performance design parameters

TestID Configura- Testpro- Qm(kN) K;(kN/ Ay Ay (mm) pg Ey

(ycthoadData tion tocol mm) (mm) (KNmm)
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SEISMIC RESPONSE OF SUSPENDED PIPING RESTRAINT
INSTALLATIONS

Definition of performance design parameters

Configuration Perfor-

Damage description

Photographs

SS1

EDP Heff,exp

mance

objective

DL Monotonic Test=1.5
Cyclic Test 1=1.5
Cyclic Test2=1.3
Mean=1.4

LS Monotonic Test=7.0

Cyclic Test 1=6.0
Cyclic Test 2=35.1
Mean=6.0

Yielding of the channel
hinge connecting the
brace channel and the
vertical channel in one
of the two trapezes

Significant rotation of the
specimen around the
vertical axis

Disconnection of the
diagonal braces from
the horizontal channels

Sliding between one
diagonal brace and the
hinge connection with
the rigid floor (only in
Test 2)

The gravity load carrying
capacity of the speci-
men was not compro-
mised by the induced
damage

UNIVERSITA
ATpés DEL SALENTO

Configu- Performance  EDP iy, Damage description Photographs
ration  objective
S§3 DL Monotonic Test=1.7 Buckling of the diagonal
Cyclic Test 1=1.3 braces in the out of plane
Cyclic Test 2=1.1 direction
Mean=14 Global rotation of the
specimen due to different
deformation of the braces
LS Monotonic Significant deformation of
Test=17.0 the vertical and diagonal
CyclicTest 1=13.6  rods
Cyclic Test 2=12.3  Rotation around the horizon- '
Mean=14.3 tal and perpendicular axis
of the pipes

The gravity load carrying
capacity of the specimen
was not compromised by
the induced damage




SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

Ye Z, Abu A, Fleischmann C, Dhakal R.P. (2023) Performance of firestopping systems: State-of-the-art and research needs in earthquake-prone regions, Development in the Built Environment
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SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

ENRICH

AIM OF THE PROJECT
The project aims at enhancing the resilience of Italian Healthcare and
Hospital Facilities by improving functional adaptivity and seismic
performance of non-structural elements
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SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

During visual inspections in Italian strategic facilities the absence of adequate
firestopping systems has been observed.
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SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

Firestop
sealant

Firestopping systems are
subjected to relative
displacements of the structural
and non-structural elements.

It is required to design the sway
bracing systems also looking at
the target displacements of
firestopping systems.
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SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

Displacement s [mm)]

Load F [kN]

Pressure p [Pa)

Hoehler M.S., Lutz C., Schulze P (2012) Testing passive fire-resistance systems for fire following earthquakes. Structural Congress 2012 ASCE.
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SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

EXPERIMENTAL PROGRAM IN COLLABORATION WITH HILTI

Two typologies of firestop systems will be tested in both longitudinal and transverse direction using a universal
testing machine. The loading protocol will be defined according to ASTM E3037 and FEMA 461

Archetype | ID Test | Wall Pipe Firestop | Loading Direction | N. Test
. 11 Concrete | Steel pipe | Type 1 Longitudinal 3
12 Concrete | Steel pipe | Type 1 Transverse 3
) 21 Concrete | Steel pipe | Type 2 Longitudinal 3
2 2 Concrete | Steel pipe | Type 2 Transverse 3
] 31 Gypsum | Steelpipe | Typel Longitudinal 3
32 Gypsum | Steel pipe | Type 1 Transverse 3
4 4 1 Gypsum | Steel pipe | Type 2 Longitudinal 3
4 2 Gypsum | Steel pipe | Type 2 Transverse 3




SEISMIC RESPONSE OF FIRESTOPPING SYSTEMS

NUMERICAL SIMULATIONS

Following the experimental tests, specific numerical parametric analyses will be performed to define
design provisions regarding the spacing between seismic trapeze installations close to the passive fire-
resistance systems.
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CONCLUSIONS

d

The seismic performance of non-structural elements is of paramount importance in the assessment of
combined seismic-fire risk, both in terms of fire ignition probability and risk reduction.

Sprinkler piping systems represent a key aspect in the risk evaluation, and they should be designed
according to performance-based seismic design procedures

Experimental studies are still required to characterize the behaviour of the critical elements in sprinkler
piping systems (i.e. firestopping systems)

Once the seismic performance of sprinkler piping systems will be completely characterized, this data
could be used to better investigate the post-earthquake fire risk in critical facilities.
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