

Resina Hilti HIT-RE 500 V3 con barra HIT-V

Sistema di resina a iniezione Vantaggi - Tecnologia SAFEset: Hilti perforazione e pulizia del foro in HIT-RE V3 500 un'unica fase con la punta cava cartuccia da 330 per perforatori Hilti e l'attrezzo di irruvidimento per pulizia di fori (disponibile anche diamantati in cartuccia da - Adatta per calcestruzzo 500 ml e 1400 ml) fessurato/non fessurato da C 20/25 a C 50/60 Miscelatore - Alta capacità di carico statico - Adatta per calcestruzzo a secco e saturo d'acqua - Applicazione sott'acqua - Elevata resistenza alla corrosione Barra HIT-V - Lungo tempo di lavorabilità a temperature elevate - Resina epossidica inodore

Materiale di base

Calcestruzzo (non fessurato)

Calcestruzzo (fessurato)

Condizioni di installazione

Foratura con trapano a percussione

Foratura con corona diamantata

Tecnologia SAFE**set** Hilti

Distanze dal bordo e interassi ridotti

Profondità di posa variabile

Condizioni di carico

Statico/ semi statico

Sismico, ETA-C1, C2

Resistenza al fuoco

Altre informazioni

Benestare tecnico europeo

Marchio CE

Software di calcolo PROFIS Anchor

Resistenza alla corrosione

Elevata resistenza alla corrosione

Omologazioni/certificati

Descrizione	Autorità/laboratorio	N°/data di pubblicazione
Benestare tecnico europeo a)	CSBT	ETA-16/0143 / 28/07/2016

a) Tutti i dati riportati in questa sezione si riferiscono a ETA-16/0143 edizione 28/07/2016.

Resistenza sismica (per un ancoraggio singolo)

Tutti i dati riportati in questa sezione sono riferiti a:

- Posa corretta (vedere le istruzioni per la posa con un perforatore a percussione)
- Nessuna influenza derivante da distanza dal bordo o interasse
- Cedimento lato acciaio
- Ancorante HIT-V con classe di resistenza 8.8
- Spessore minimo del materiale base
- Calcestruzzo C 20/25, fck,cube = 25 N/mm²

Intervallo di temperatura I (temperatura min. materiale base -40 °C, temperatura max. del materiale base a lungo/breve termine: +24 °C/40 °C)

- Intervallo della temperatura di installazione da +5 °C a +40 °C
- α_{gap} = 1,0 (usando il set di riempimento/antisismico)

Profondità di ancoraggio effettiva per categoria sismica C2 e C1

Misura ancorante			M8	M10	M12	M16	M20	M24	M27	M30
Profondità di ancoraggio effettiva	h _{ef}	[mm]	80	90	110	125	170	210	240	270

Resistenza caratteristica in caso di prestazione sismica categoria C2

Misura ancorante	M16	M20	M24
Trazione N _{Rk,seis} HIT-V 8.8 [kN]	34,6	57,7	80,8
Taglio V _{Rk,seis} HIT-V 8.8	46,0	77,0	103,0

Resistenza di progetto in caso di prestazione sismica categoria C2

Misura ancorante	M16	M20	M24
Trazione N _{Rd,seis} HIT-V 8.8 [kN]	23,0	38,5	53,8
Taglio V _{Rd,seis} HIT-V 8.8	36,8	61,6	82,4

Resistenza caratteristica in caso di prestazione sismica categoria C1

Misura ancora	ante	M8	M10	M12	M16	M20	M24	M27	M30
Trazione N _{Rk}	HIT-V 8.8 [kN]	12,1	19,8	32,8	42,8	67,8	93,1	113,8	135,8
Taglio V _{Rk}	HIT-V 8.8	15,0	23,0	34,0	63,0	98,0	141,0	184,0	224,0

Resistenza di progetto in caso di prestazione sismica categoria C1

Misura ancora	ante		M8	M10	M12	M16	M20	M24	M27	M30
Trazione N _{Rd}	HIT-V 8.8	— [kN]	8,0	13,2	21,8	28,5	45,2	62,1	75,8	90,5
Taglio V _{Rd}	HIT-V 8.8	— [KIN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2

Resistenza statica (per un ancoraggio singolo)

Tutti i dati riportati in questa sezione sono riferiti a:

- Posa corretta (vedere le istruzioni per la posa con un perforatore a percussione)
- Nessuna influenza derivante da distanza dal bordo o interasse
- Cedimento lato acciaio
- Ancorante HIT-V con classe di resistenza 8.8
- Spessore minimo materiale base
- Calcestruzzo C 20/25, fck,cube = 25 N/mm²
- Intervallo di temperatura I (temperatura min. materiale base -40 °C, temperatura max. del materiale base a lungo/breve termine: +24 °C/40 °C)
- Intervallo della temperatura di installazione da +5 °C a +40 °C

Profondità di ancoraggio effettiva per condizioni statiche

Misura ancorante			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Profondità di ancoraggio effettiva	h _{ef}	[mm]	80	90	110	125	170	210	240	270	300	300	360

Trapano a percussione

Resistenza caratteristica in caso di prestazione statica

Misura ancora	ante			ETA	\-16/01	43, edi	zione '	18/04/2	016		Dati tecnici Hilti supplementari		
			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Calcestruzzo	non fessurato)											
Trazione N _{Rk}	HIT-V 8.8	[[A]]	29,0	43,1	58,3	70,6	111,9	153,7	187,8	224,0	262,4	302,7	344,9
Taglio V _{Rk}	HIT-V 8.8	— [kN]	15	23	34	63	98	141	184	224	278	327	390
Calcestruzzo	fessurato												
Trazione N _{Rk}	HIT-V 8.8	— [kN]	13,1	21,2	33,2	50,3	79,8	109,6	133,9	159,7	-	-	-
Taglio V _{Rk}	HIT-V 8.8	<u> —</u> [кілј	15	23	34	63	98	141	184	224	-	-	-

Resistenza di progetto in caso di prestazione statica

Misura ancora	ante			ETA	\-16/01	43, edi	zione '	18/04/2	016		Dati tecnici Hilti supplementari		
			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39
Calcestruzzo	non fessurato												
Trazione N _{Rd}	HIT-V 8.8	— [kN]	19,3	28,7	38,8	47,1	74,6	102,5	125,2	149,4	145,8	168,2	191,6
Taglio V _{Rd}	HIT-V 8.8	— [кі л]	12	18,4	27,2	50,4	78,4	112,8	147,2	179,2	222,4	261,6	312
Calcestruzzo	fessurato												
Trazione N _{Rd}	HIT-V 8.8	— [kN]	8,7	14,1	22,1	33,5	53,2	73	89,2	106,5	-	-	-
Taglio V _{Rd}	aglio V _{Rd} HIT-V 8.8		12	18,4	27,2	50,4	78,4	112,8	147,2	179,2	-	-	-

Carotaggio

Resistenza caratteristica in caso di prestazione statica

Misura ancora	anto			E	TA-16/0	143, edi	zione 18	3/04/2016	3	
Wiisura aricora				M10	M12	M16	M20	M24	M27	M30
Calcestruzzo	non fessurato									
Trazione N _{Rk}	HIT-V 8.8	— [kN]	24,1	33,9	49,8	70,6	111,9	153,7	187,8	224,0
Taglio V _{Rk}	HIT-V 8.8	— [KIN]	15,0	23,0	34,0	63,0	98,0	141,0	184,0	224,0

Resistenza di progetto in caso di prestazione statica

Misura anger	/lisura ancorante		ETA-16/0143, edizione 18/04/2016										
Wilsura aricora				M10	M12	M16	M20	M24	M27	M30			
Calcestruzzo non fessurato													
Trazione N _{Rd}	HIT-V 8.8	וואוז	13,4	18,8	27,6	33,6	53,3	73,2	89,4	106,7			
Taglio V _{Rd}	HIT-V 8.8	- [kN]	12,0	18,4	27,2	50,4	78,4	112,8	147,2	179,2			

Materiali

Proprietà meccaniche

Misura ancoran	ite		Dati	ai sens	i di ET	A-16/0	143, ed	dizione	18/04/	2016	Dati tecnici Hilti supplementari			
			M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
Resistenza ultima caratteristica f _{uk}	HIT-V 8.8	[N/mm²]	800	800	800	800	800	800	800	800	800	800	800	
Resistenza allo snervamento f _{yk}	HIT-V 8.8	[N/mm²]	640	640	640	640	640	640	640	640	640	640	640	
Area della sezione sollecitata As	HIT-V	[mm²]	36,6	58,0	84,3	157	245	353	459	561	694	817	976	
Momento resistente W	HIT-V	[mm³]	31,2	62,3	109	277	541	935	1387	1874	2579	3294	4301	

Qualità dei materiali

Elemento	Materiale					
	Classe di resistenza 8.8, A5 > 12% duttile					
Barra filettata HIT-V 8.8	Elettrozincato ≥ 5μm					
	Zincato a caldo ≥ 45 μm					
	Elettrozincata ≥ 5 μm, zincata a caldo ≥ 45 μm					
Rondella	Acciaio inox 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
	Acciaio altamente resistente alla corrosione 1.4529, 1.4565 EN 10088-1:2014					
	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata					
Dado	Elettrozincato ≥ 5μm, zincato a caldo ≥ 45 μm					
	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata					
	Acciaio inox 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
	Classe di resistenza del dado adattata alla classe di resistenza della barra filettata					
	Acciaio altamente resistente alla corrosione 1.4529, 1.4565 EN 10088-1:2014					

Intervallo temperatura di esercizio

La resina a iniezione Hilti HIT-RE 500 V3 può essere applicata negli intervalli di temperatura indicati di seguito. Una temperatura elevata del materiale di base può causare una riduzione della resistenza di adesione di progetto.

Intervallo di temperatura	Temperatura materiale base	Temperatura massima del materiale base nel lungo termine	Temperatura massima del materiale base nel breve termine		
Intervallo di temperatura I	da -40 °C a +40 °C	+24 °C	+40 °C		
Intervallo di temperatura II	da -40 °C a +70 °C	+43 °C	+70 °C		

Temperatura massima del materiale base nel breve termine

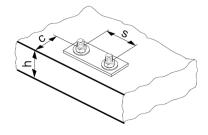
Temperature elevate del materiale base nel breve termine si riferiscono a intervalli brevi, ad es. per effetto dei cicli diurni.

Temperatura massima del materiale base nel lungo termine

Le temperature elevate del materiale base nel lungo termine sono pressoché costanti nel corso di periodi di tempo significativi.

Posa

Informazioni di posa


Informazioni di posa

Misura ancorante			Dati ai sensi di ETA-16/0143, edizione 18/04/2016							Dati tecnici Hilti supplementari			
		M8	M10	M12	M16	M20	M24	M27	M30	M33	M36	M39	
Diametro nominale punta trapano	d ₀	[mm]	10	12	14	18	22	28	30	35	37	40	42
Intervallo di profondità del foro e profondità di ancoraggio effettivi ^{a)}	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120	132	144	156
	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600	660	720	780
Spessore minimo materiale base	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm			h _{ef} + 2 d ₀							
Interasse minimo	Smin	[mm]	40	50	60	75	90	115	120	140	165	180	195
Distanza dal bordo minima	Cmin	[mm]	40	45	45	50	55	60	75	80	165	180	195
Interasse critico per cedimento da frattura	Scr,sp		2 Ccr,sp										
Distanza dal bordo critica per cedimento da frattura ^{b)}			1,0 · h _{ef} per h / h _{ef} ≥ 2,0								_		
	C _{cr,sp}	[mm]	4,6 h _{ef} - 1,8 h per 2,0 > h / h _{ef} > 1,3										
		2,26 h_{ef} per h / $h_{ef} \le 1,3$							2,26·h _{ef} c _{cr,sp}				
Interasse critico per cedimento da rottura conica	Scr,N		2 Ccr,N										
Distanza dal bordo critica per cedimento da rottura conica del calcestruzzo c)	Ccr,N	wie wie aud in	1,5 hef										

Per interassi (distanze dal bordo) inferiori agli interassi critici (distanze dal bordo critiche) i carichi di progetto devono essere ridotti.

- a) $h_{ef,min} \le h_{ef} \le h_{ef,max}$ (h_{ef} : profondità di ancoraggio)
- b) h: spessore del materiale base ($h \ge h_{min}$)
- c) La distanza dal bordo critica per cedimento da rottura conica del calcestruzzo dipende dalla profondità di ancoraggio

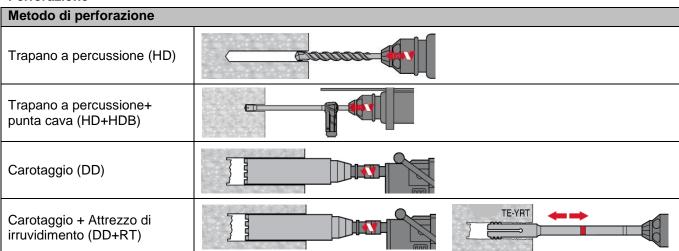
 $h_{\text{ef}}\,$ e dalla resistenza di adesione di progetto. La formula semplificata fornita nella tabella è cautelativa.

Attrezzatura per l'installazione a)

Misura ancorante	M8	M10	M12	M16	M20	M24	M27	M30	
Perforatore a rotazione		TE 2 –	TE 16		TE 40 – TE 70				
Altri attrezzi	Pistola ad aria compressa o pompetta a soffietto, kit di scovolini di pulizia, dispenser								
Ulteriori attrezzi Hilti consigliati	DD EC-1, DD 100 DD xxx ^{a)}								

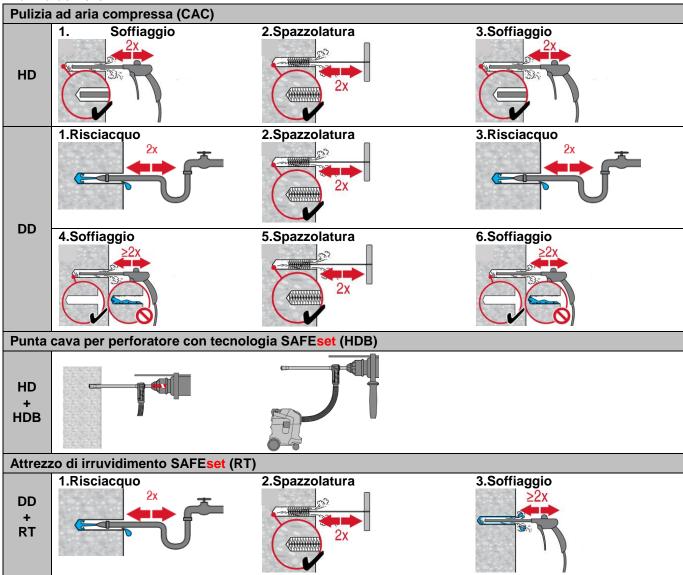
Per gli ancoranti in fori carotati, i valori di carico per la resistenza combinata a sfilamento e rottura conica del calcestruzzo devono essere ridotti (vedere paragrafo "Istruzioni per la posa")

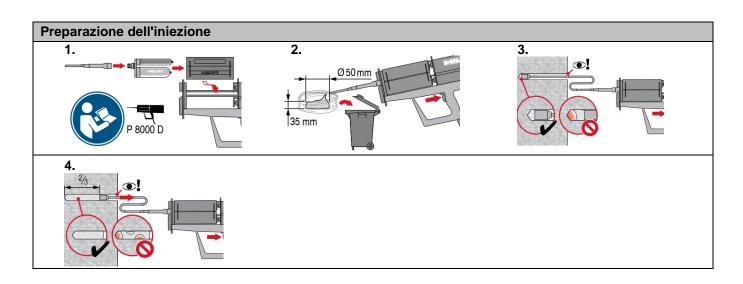
Tempo di indurimento per condizioni generali

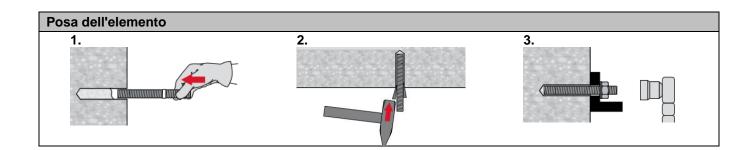

Temperatura del materiale base	Tempo di indurimento minimo				
Т	t _{cure}				
da -5 °C a -1 °C	168 h				
da 0 °C a 4 °C	48 h				
da 5 °C a 9 °C	24 h				
da 10 °C a 14 °C	16 h				
da 15 °C a 19 °C	16 h				
da 20 °C a 24 °C	7 h				
da 25 °C a 29 °C	6 h				
da 30 °C a 34 °C	5 h				
da 35 °C a 39 °C	4,5 h				
40 °C	4 h				

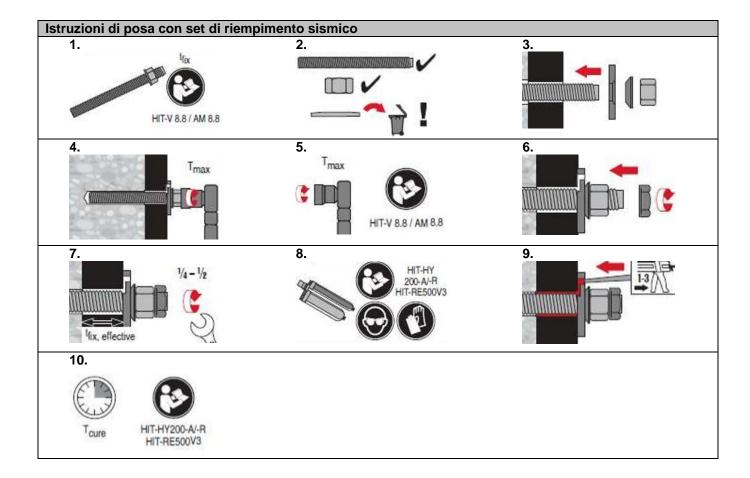
I dati relativi al tempo di indurimento sono validi soltanto per materiale base secco. In materiale base umido, i tempi di indurimento devono essere raddoppiati.

Istruzioni per la posa


*Per informazioni dettagliate sull'installazione vedere le istruzioni per l'uso allegate alla confezione del prodotto.


Perforazione




Pulizia del foro

