

Hilti S-BT Screw-in threaded studs

Specifications

July 2017

5.6 Effect of S-BT threaded stud fastenings on the fatigue strength of the base material structural steel

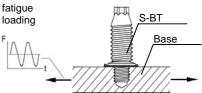
Report No. 2017-38X by Prof. U. Kuhlmann an Prof. H.-P. Günther from the University of Stuttgart: Fatigue classification of the constructional detail "Structural steel base material with Hilti S-BT screw-in threaded studs", (2017) [4]

Report No. 5214011585/e, No. 5214013022/e_corr. and 5214014601/e Swiss Federal Laboratories for Materials Science and Technology (2016 and 2017) [1], [2], and [3]

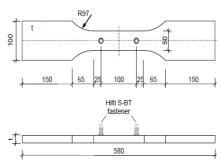
General comments

When using Hilti S-BT fasteners installed into structural steel elements that are subjected to cyclic loading, the effect of the fastener on the fatigue strength of the steel base material has to be considered. Hilti has completed a comprehensive fatigue test program in order to classify the constructional detail "Structural steel base material with Hilti S-BT screw-in threaded studs" in compliance with different fatigue codes and standards, namely EN 1993-1-9 [5], AWS D1.1/D1.1M [6], ABS [7], BV [8], DNVGL-RP-C203 [9] and BS 7608 [10]. A corresponding evaluation was made by Prof. U. Kuhlmann and Prof. H.-P. Günther from the University of Stuttgart (Report No. 2017-38X, [4]).

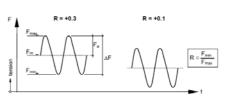
Test Concept


7 different test series were carried out varying the following parameters which can influence the fatigue resistance:

- 4 different plate thickness' (t = 3, 4, 6, 8 and 20 mm),
- 2 different stress ratios (R = +0.1 and +0.3),
- 2 different installation conditions (correctly installed and fastener removed),
- 2 different fastener materials (stainless steel and carbon steel)


In any case the S235JR steel base material is used acc. to EN 10025-2. Higher strength and fine grain steel shows in general better fatigue resistance in the non-welded condition.

Name of series	Thickness t [mm]	Stress ratio R [-]	Installation condition	# of test specimens	Report				
235-03-01-ci	3	+0.1	stud correctly installed	10	[2]				
235-04-01-ci	4	+0.1	stud correctly installed	10+2*	[1], [3]				
235-04-01-io	4	+0.1	stud installed and overwound	7*	[3]				
235-06-01-ci	6	+0.1	stud correctly installed	10	[1]				
235-06-03-ci	6	+0.3	stud correctly installed	10	[3]				
235-08-01-ci	8	+0.1	stud correctly installed	11+2*	[1], [2], [3]				
235-08-01-ip	8	+0.1	stud installed and pulled out	9	[2]				
235-08-03-ci	8	+0.3	stud correctly installed	6	[2]				
235-20-01-ci	20	+0.1	stud correctly installed	10	[2]				
	Steel base material grade: S235JR Standard fastener type: S-BT-MR M8/7 SN6 (stainless steel)								
* Fastener type: S-			33 31331)						


Table 1: Overview of the test program

Hilti S-BT fastening system under cyclic loading

Shape and dimension of the test specimen

Loading condition of test specimens

Test results and evaluation procedure

The statistical evaluation of the test results and the final set-up of a fatigue reference class and S-N curve were done in three steps.

- 1. Determination of linear regression line (mean S-N curve) of fatigue test
- Determination of a characteristic design S-N curve with a certain probability of failure based on the requirements with regards to the statistical intervals (confidence level, probability of survival) as given in the specific codes and standards.
- 3. Recommendation of a final design S-N curve and fatigue reference class based on the afore mentioned statistical evaluation and engineeringjudgment taking into account the specific S-N curve types and classes as given in the relevant codes and standards.

Table 2 summarizes the results of a statistical evaluation acc. to EN 1993-1-9 combining all test results with regards to the base material thickness, stress ration R, installation condition and fastener material.

Thick-			No. of				Standard	k-	at N =	strength 2·10 ⁶
ness t [mm]	ratio R [-]	Instal- lation*	test speci-	data points	run- outs	of S-N curve m [-]	deviation s [-]	factor [-]		detail category ∆σ₀
			IIIelis						[N/mm ²]	[N/mm ²]
320	0.1-0.3	ci, io, ip	83	79	4	5.17	0.373		136.3	102.0
	ness t [mm]	ness ratio t [mm] R [-]	ness ratio t [mm] R [-]	Thick- ness ratio t [mm] R [-] Instal- lation* test speci- mens	Thick- ness ratio t [mm] R [-] Instal- lation* test speci- mens data	Thick- ness ratio t [mm] R [-] Instal- lation* test speci- mens data run- outs	Thick- ness ratio t [mm] R [-] Instal- lation* test speci- mens data run- curve points outs m [-]	Thick- ness ratio t [mm] R [-] Instal- lation* test specimens points points outs m [-] Slope of S-N curve m [-] Standard deviation s [-]	Thick- ness ratio t [mm] R [-] Instal- lation* test speci- mens data run- points outs m [-] Slope of S-N curve m [-] standard deviation factor [-]	Thick- ness ratio t [mm] R [-] Instal- test specimens test specim

Table 2: Statistical evaluation combining all test results

In Figure 1, all test data and the statistically evaluated design S-N curve are plotted in comparison to the detail category $100 \ (m_1 = 5)$ as given in EN 1993-1-9 [5] and the IIW-Recommendations [11]. Both curves fit very well, which means that the fatigue strength of Hilti S-BT fastening system can be well described by the detail category $100 \ (m_1 = 5)$.

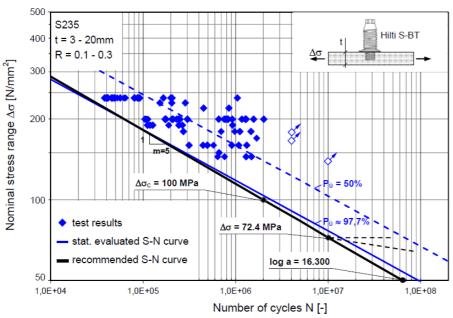
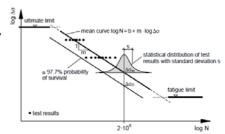



Figure 1: Statistical evaluation of all test results

Statistical evaluation acc. to EN 1993-1-9 (EC 3)

Test facility for fatigue test

Specimen for fatigue test

Fracture surface

Recommendation of a design S-N curve according to different codes

On the basis of the existing test results and a statistical evaluation of these test data according to the provisions given in EN 1993-1-9:2005 (Eurocode 3) it is recommended to use following general design S-N curve for the Hilti S-BT fastening system. The structural steel grades S235 up to S355 acc. to EN 10025-2, EN 10025-3 and EN 10225 are covered.

$$\log N = \log a - m \cdot \log S$$

with

log N logarithm to base 10 of corresponding number of cycles to failure N

log a = 16.300 intercept on the log N axis

m = 5.0 negative slope of S-N-curve being linear on a log-log basis

log S logarithm to base 10 of stress range $\Delta \sigma$

Number of load cycles N	Stress range Δσ [MPa]				
1 · 10 ⁵	181.9				
1 · 10 ⁶	114.8				
2 · 10 ⁶	100.0				
5 · 10 ⁶	83.2				
1 · 10 ⁷	72.4				
1.108	45.7				

EN 1993-1-9:2005 (Eurocode 3)

It is recommended to use the following design S-N curve respectively detail category given in Table 3 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

Detail category	Construction detail	Description	Requirements						
100 m = 5		Hilti S-BT screw-in stainless and carbon steel threaded studs with pre-drilled hole in structural steel base material. Imperfect fastener installations as e.g. overwound or pulled-out fasteners are covered.	$\Delta\sigma$ to be calculated by the gross cross-section. Installation, static loading and spacing of fasteners only in accordance with the requirements given in [1] or [2]. Plate thickness t \geq 3 mm. Steel base material S235 and S355 according to EN 10025-2 and EN 10025-3.						
	[1] Hilti S-BT screw-in threaded studs. Specification Binder, Edition 01/2017 [2] Hilti Direct Fastening Technology Manual. Edition 12/2016. S-BT product pages.								

Table 3: Recommendation of fatigue S-N curve and detail category acc. to EN 1993-1-9:2005

AWS D1.1/D1.1M:2015

It is recommended to use the following design S-N curve respectively stress category termed "S-BT" given in Table 4 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

Stress	m	C _f	C _f x 329	F	тн
Category	[-]	for [ksi]	for [MPa]	[ksi]	[MPa]
Α	3.0	250 x 10 ⁸	8.225 x 10 ¹²	23.9	165.0
В	3.0	120 x 10 ⁸	3.948 x 10 ¹²	16.0	110.0
B'	3.0	61 x 10 ⁸	2.007 x 10 ¹²	12.0	83.0
С	3.0	44 x 10 ⁸	1.448 x 10 ¹²	10.0	69.0
D	3.0	22 x 10 ⁸	7.238 x 10 ¹¹	7.0	48.0
E	3.0	11 x 10 ⁸	3.619 x 10 ¹¹	4.5	31.0
E'	3.0	39 x 10 ⁸	1.283 x 10 ¹¹	2.6	18.0
F	6.0	150 x 10 ¹⁰	1.650 x 10 ¹⁷	8.0	55.0
S-BT	5.0	6065 x 10 ¹⁰	1.995 x 10 ¹⁶	12.6	87.0

Description and requirements	Stress Category	Constant C _f ksi [MPa]	Threshold F _{TH} ksi [MPa]	Slope m	Potential crack initiation	Illustrative Example
Hilti S-BT screw-in stainless and carbon steel threaded studs with predrilled hole in structural steel base material. Imperfect fastener installations as e.g. overwound or pulled-out fasteners are covered. $\Delta\sigma$ to be calculated by the gross cross-section. Installation, static loading and spacing of fasteners only in accordance with the requirements given in [1] or [2]. Plate thickness t \geq 3 mm. Steel base material up to yield strength 355 MPa.	S-BT	6065x10 ¹⁰	12.6 [87.0]	5.0	At the edge or tip of the pre-drilled hole	

Table 4: Recommendation of fatigue S-N curve and stress category acc. to AWS D1.1:2015

ABS:2014

It is recommended to use the following design S-N curve respectively stress category termed "S-BT" given in Table 5 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

Curve	-	A.	m			r	Na	So	
Class	for [MPa] units	for [ksi] units		for [MPa] units	for [ksi] units			for [MPa] units	for [ksi] units
В	1.01×10 ¹⁵	4.48×10 ¹¹	4.0	1.02x10 ¹⁹	9.49x10 ¹³	6.0	1.0x10 ⁷	100.2	14.5
С	4.23x10 ¹³	4.93x10 ¹⁰	3.5	2.59x10 ¹⁷	6.35×10 ¹²	5.5	1.0x10 ⁷	78.2	11.4
D	1.52×10 ¹²	4.65×10 ⁹	3.0	4.33x10 ¹⁵	2.79×10 ¹¹	5.0	1.0×10 ⁷	53.4	7.75
E	1.04×10 ¹²	3.18x10 ⁹	3.0	2.30x10 ¹⁵	1.48×10 ¹¹	5.0	1.0×10 ⁷	47.0	6.83
F	6.30x10 ¹¹	1.93x10 ⁹	3.0	9.97×10 ¹⁴	6.24×10 ¹⁰	5.0	1.0x10 ⁷	39.8	5.78
F2	4.30x10 ¹¹	1.31x10 ⁹	3.0	5.28×10 ¹⁴	3.40×10 ¹⁰	5.0	1.0x10 ⁷	35.0	5.08
G	2.50x10 ¹¹	7.64×10 ⁸	3.0	2.14×10 ¹⁴	1.38×10 ¹⁰	5.0	1.0x10 ⁷	29.2	4.24
w	1.60x10 ¹¹	4.89×10 ⁸	3.0	1.02×10 ¹⁴	6.54×10 ⁹	5.0	1.0×10 ⁷	25.2	3.66
S-BT	1.995x10 ¹⁶	1.28x10 ¹²	5.0	1.995x10 ¹⁶	1.28x10 ¹²	5.0	1.0x10 ⁷	72.4	10.50

^[1] Hillti S-BT screw-in threaded studs. Specification Binder, Edition 01/2017 [2] Hillti Direct Fastening Technology Manual. Edition 12/2016. S-BT product pages.

Descrip	otion and note	es on mode		Class	Expla	natory com	ments		Example including failure modes		
steel thr in struct Imperfe overwore covered Potentia	BT screw-in state added studs water at steel base of fastener insund or pulled of the additional and the additional for a crack initiation of the pre-drilled hours and the additional factors and the additional	with pre-drilled e material. tallations as o out fasteners on at the edge	d hole e.g. are	S-BT	∆σ to be calculated by the gross cross-section. Installation, static loading and spacing of fasteners only in accordance with the requirements given in [1] or [2]. Plate thickness t ≥ 3 mm. Steel base material up to yield strength 355 MPa.						
Parame	ter of design	S-N curve c	lass S	ВТ							
Curve	Д	1	m				r	No	S	Q	
Class	for [MPa] units	for [ksi] units		for [N un	MPa] its	for [ksi] units			for [MPa] units	for [ksi] units	
S-BT	1.995×10 ¹⁶	1.28×10 ¹²	5.0	1.995x10 ¹⁶ 1.28x10 ¹² 5			5.0	1.0x10 ⁷	72.4	10.50	
• •	BT screw-in thre						-				

Table 5: Recommendation of fatigue S-N curve and fatigue class acc. to ABS-(A):2014

BV:2016

It is recommended to use the following design S-N curve respectively stress category termed "S-BT" given in Table 6 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

Curve	FAT	Fir	st slope	Slope in	tersection	Sec	ond slope	Reference thick-	Thickness	
	∆S [MPa]	m ₁	log ₁₀ (K ₁)	N cycles	∆S _q [MPa]	m ₂	log ₁₀ (K ₂)	ness t _{ref} [mm]	exponent n	
В	150.00	4.0	15.0056	10 ⁷	100.32	7	21.0105		0	
С	123.81	3.5	13.6260	10 ⁷	78.19	6	18.3589		see Sec. 10, Tab. 2	
D	91.25	3.0	12.18.18	10 ⁷	53.36	5	15.6363			
E (1)	80.31	3.0	12.0153	10 ⁷	46.96	5	15.3588			
F (1)	68.10	3.0	11.8004	10 ⁷	39.82	5	15.0007	25		
F2 (1)	59.95	3.0	11.6345	10 ⁷	35.06	5	14.7241		of BV	
P⊥	91.25	3.0	12.1818	10 ⁷	53.36	5	15.6363			
PII	100.00	3.0	12.3010	10 ⁷	58.48	5	15.8350			
S-BT	100.00	5.0	16.3000	10 ⁷	72.40	5	16.3000	25	0	

Joint and	detail descrip	otion	Curv	е	Geometry		Requirements	1	
steel threa in structura Imperfect to overwound covered. Potential of	screw-in stainleded studs with al steel base m fastener install d or pulled-out crack initiation a pre-drilled hole.	pre-drilled in naterial. ations as e.g fasteners ar	nole g. e S-B1				∆σ to be calculated by the gross cross-section. Installation, static loading and spacing of fasteners only in accordance with the requirements given in [1] or [2]. Plate thickness t ≥ 3 mm. Steel base material up to yield strength 355 MPa.		
Paramete	r of design S-	N curve S-E	зт						
Curve	FAT	First	slope	Slope in	tersection	Sec	ond slope	Thickness	
	∆S [MPa]	m ₁	log ₁₀ (K ₁)	N cycles	∆S _q [MPa]	m ₂	log ₁₀ (K ₂)	exponent n	
S-BT	100	5.0	16.300	10 ⁷	72.40	5.0	16.300	0	

Table 6: Recommendation of fatigue design S-N curve and stress category acc. to BV:2016, air

DNVGL-RP-C203:2016

It is recommended to use the following design S-N curve respectively stress category termed "S-BT" given in Table 7 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

S-N curve	N ≤ 10	⁷ cycles	N > 10 ⁷ cycles	Fatigue limit at 10 ⁷ cycles	Tickness
	m ₁	log a ₁	log a ₂ m ₂ = 5.0	[MPa]	exponent k
B1	4.0	15.117	17.146	106.97	0
B2	4.0	14.885	16.858	93.59	0
С	3.0	12.592	16.320	73.10	0.05
C1	3.0	12.449	16.081	65.50	0.10
C2	3.0	12.301	15.835	58.48	0.15
D	3.0	12.164	15.606	52.63	0.20
E	3.0	12.010	15.350	46.78	0.20
F	3.0	11.855	15.091	41.52	0.25
F1	3.0	11.699	14.832	36.84	0.25
F3	3.0	11.546	14.576	32.75	0.25
S-BT	5.0	16.300	16.300	72.4	0

Detail category	Constructi	on detail	Description		Requirements				
S-BT			Hilti S-BT screw-in stainless and carbon steel threaded studs with pre-drilled hole in structural steel base material. Imperfect fastener installations as e.g. overwound or pulled-out fasteners are covered.		$\Delta\sigma$ to be calculated by the gross cross-section. Installation, static loading and spacing of fasteners only in accordance with the requirements given in [1] or [2]. Plate thickness t \geq 3 mm. Steel base material up to yield strength 355 MPa.				
Parameter of	of S-N curve	for detail catego	ry S-BT						
Detail	N ≤ 1	10 ⁷ cycles	N > 10 ⁷ cycles log a ₂		ue limit at 10 ⁷	Thickness exponent			
category	m ₁	log a₁	$m_2 = 5.0$	су	cles [MPa]	k			
S-BT	5.0	16.300	16.300	72.4		0			
	[1] Hilti S-BT screw-in threaded studs. Specification Binder, Edition 01/2017 [2] Hilti Direct Fastening Technology Manual. Edition 12/2016. S-BT product pages.								

Table 7: Recommendation of fatigue S-N curve and detail category acc. to DNVGL-RP-C03, air

BS 7608:2014

It is recommended to use the following design S-N curve respectively stress category termed "S-BT" given in Table 8 for the constructional detail "Steel base material with Hilti S-BT screw-in threaded studs".

Class	C _o	log ₁₀ C _o	m	SD Stand. Deviation of log₁₀N,	C ₂	S _{oc} (N=10 ⁷ cyc.) N/mm ²	S _{ov} (N=5·10 ⁷ cyc.) N/mm ²			
В	2.343·10 ¹⁵	15.3697	4.0	0.1821	1.01·10 ¹⁵	100	67			
С	1.082·10 ¹⁴	14.0344	3.0	0.2041	4.23·10 ¹³	78	49			
D	3.988·10 ¹²	12.6008	3.0	0.2095	1.52·10 ¹²	53	31			
E	3.2893·10 ¹²	12.5171	3.0	0.2509	1.04·10 ¹²	47	27			
F	1.726·10 ¹²	12.2371	3.0	0.2183	6.32·10 ¹¹	40	23			
F2	1.231·10 ¹²	12.0902	3.0	0.2279	4.31·10 ¹¹	35	21			
G	5.656·10 ¹¹	11.7526	3.0	0.1793	2.48·10 ¹¹	29	17			
G2	3.907·10 ¹¹	11.5918	3.0	0.1952	1.59·10 ¹¹	25	15			
S1	5.902·10 ¹⁶	16.7710	5.0	0.2350	2.00·10 ¹⁶	46 (10 ⁸ cyc.)	46 (10 ⁸ cyc.)			
S2	3.949·10 ¹⁶	16.5965	5.0	0.3900	6.55·10 ¹⁵	37 (10 ⁸ cyc.)	37 (10 ⁸ cyc.)			
S-BT	5.902·10 ¹⁶	16.7710	5.0	0.2350	2.00·10 ¹⁶	74.2	52.5			
Design S-N gurye: log N = log -C - 2 - SD - m -log S										

Design S-N curve: $\log N = \log_{10}C_0 - 2 \cdot SD - m \cdot \log S$

Product form	Loca- tion of crack	Detail	Manufac turing re quireme	- r	Special equirements	Design stress area		iss	Notes	Sketch
Rolled steel plates and sections	At the edge or tip of the pre- drilled hole	Hilti S-BT screw-in stainless and car- bon steel threaded studs with pre-drilled hole in structural steel base material.	Installatic static loa ing and spacing of fasteners only in accordan with the require- ments giv in [1] or [d- n sof n y ce	Plate thick- less t ≥ 3mm. Steel base material up to ield strength 55 MPa.	Net cro section		BT :1)	Imperfect fastener installations as e.g. overwound or pulled-out fasteners are covered.	
Paramete	er of S-N c	urve for det	ail class	S-BT						
Class	c.	log ₁	oc.	m	SD Stand. Devi of log ₁₀		C ₂		S _{oc} (N=10 ⁷ cyc. N/mm ²	S _{oy} (N=5·10 ⁷ cyc.) N/mm ²
S-BT	5.902·10 ¹⁶ 16.7		710	5.0 0.2350			2.00·10 ¹⁶		74.2	52.5

Hitti S-BT screw-in threaded studs. Specification Binder, Edition 01/2017
 Hitti Direct Fastening Technology Manual. Edition 12/2016. S-BT product pages

Table 8: Recommendation of fatigue S-N curve and detail category acc. to BS 7608:2014

Literature:

- EMPA: Test Report No. 5214011585/e. Swiss Federal Laboratories for Materials Testing and Research (EMPA), April 26th 2016.
- [2] EMPA: Test Report No. 5214013022/e_corr. Swiss Federal Laboratories for Materials Testing and Research (EMPA), June 29th 2017.
- [3] EMPA: Test Report No. 5214014601/e. Swiss Federal Laboratories for Materials Testing and Research (EMPA), April 11th 2017.
- [4] Kuhlmann, U., Günther, H.-P.: Fatigue classification of the constructional detail "Structural steel base material with Hilti S-BT screw-in threaded studs". Universität Stuttgart, Institut für Konstruktion und Entwurf, June 30th, 2017, Nr. 2017-38X.
- [5] EN 1993-1-9: Eurocode 3: Design of steel structures Part 1-9: Fatigue, European Committee for Standardization.
- [6] AWS D1.1: Structural Welding Code Steel, American Welding Society.
- [7] ABS: Guide for Fatigue Assessment of Offshore Structures. American Bureau of Shipping. 2003, Updated version February 2014.
- [8] BV: Guidelines for Fatigue Assessment of Steel Ships and Offshore Units. Bureau Veritas. September 2016.
- [9] DNV-GL-RP-C203: Recommended Practice Fatigue design of offshore steel structures. Det Norske Veritas, Germanischer Lloyd. Edition 2016.
- [10] BS 7608: Guide to fatigue design and assessment of steel products.
- [11] IIW: Hobbacher, A.: Fatigue recommendations for fatigue design of welded joints and components. International Institute of Welding (IIW), XIII-1539-96 / XV-845-95 document, May 2007.